2 Characterizing signal propagation to close the performance gap in unnormalized ResNets Batch Normalization is a key component in almost all state-of-the-art image classifiers, but it also introduces practical challenges: it breaks the independence between training examples within a batch, can incur compute and memory overhead, and often results in unexpected bugs. Building on recent theoretical analyses of deep ResNets at initialization, we propose a simple set of analysis tools to characterize signal propagation on the forward pass, and leverage these tools to design highly performant ResNets without activation normalization layers. Crucial to our success is an adapted version of the recently proposed Weight Standardization. Our analysis tools show how this technique preserves the signal in networks with ReLU or Swish activation functions by ensuring that the per-channel activation means do not grow with depth. Across a range of FLOP budgets, our networks attain performance competitive with the state-of-the-art EfficientNets on ImageNet. 3 authors · Jan 21, 2021
5 Loss-to-Loss Prediction: Scaling Laws for All Datasets While scaling laws provide a reliable methodology for predicting train loss across compute scales for a single data distribution, less is known about how these predictions should change as we change the distribution. In this paper, we derive a strategy for predicting one loss from another and apply it to predict across different pre-training datasets and from pre-training data to downstream task data. Our predictions extrapolate well even at 20x the largest FLOP budget used to fit the curves. More precisely, we find that there are simple shifted power law relationships between (1) the train losses of two models trained on two separate datasets when the models are paired by training compute (train-to-train), (2) the train loss and the test loss on any downstream distribution for a single model (train-to-test), and (3) the test losses of two models trained on two separate train datasets (test-to-test). The results hold up for pre-training datasets that differ substantially (some are entirely code and others have no code at all) and across a variety of downstream tasks. Finally, we find that in some settings these shifted power law relationships can yield more accurate predictions than extrapolating single-dataset scaling laws. 5 authors · Nov 19, 2024 2
3 Stop the Flip-Flop: Context-Preserving Verification for Fast Revocable Diffusion Decoding Parallel diffusion decoding can accelerate diffusion language model inference by unmasking multiple tokens per step, but aggressive parallelism often harms quality. Revocable decoding mitigates this by rechecking earlier tokens, yet we observe that existing verification schemes frequently trigger flip-flop oscillations, where tokens are remasked and later restored unchanged. This behaviour slows inference in two ways: remasking verified positions weakens the conditioning context for parallel drafting, and repeated remask cycles consume the revision budget with little net progress. We propose COVER (Cache Override Verification for Efficient Revision), which performs leave-one-out verification and stable drafting within a single forward pass. COVER constructs two attention views via KV cache override: selected seeds are masked for verification, while their cached key value states are injected for all other queries to preserve contextual information, with a closed form diagonal correction preventing self leakage at the seed positions. COVER further prioritises seeds using a stability aware score that balances uncertainty, downstream influence, and cache drift, and it adapts the number of verified seeds per step. Across benchmarks, COVER markedly reduces unnecessary revisions and yields faster decoding while preserving output quality. King's College London · Feb 5 2