Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeLLaDA-MoE: A Sparse MoE Diffusion Language Model
We introduce LLaDA-MoE, a large language diffusion model with the Mixture-of-Experts (MoE) architecture, trained from scratch on approximately 20T tokens. LLaDA-MoE achieves competitive performance with significantly reduced computational overhead by maintaining a 7B-parameter capacity while activating only 1.4B parameters during inference. Our empirical evaluation reveals that LLaDA-MoE achieves state-of-the-art performance among diffusion language models with larger parameters, surpassing previous diffusion language models LLaDA, LLaDA 1.5, and Dream across multiple benchmarks. The instruct-tuned model LLaDA-MoE-7B-A1B-Instruct demonstrates capabilities comparable to Qwen2.5-3B-Instruct in knowledge understanding, code generation, mathematical reasoning, agent and alignment tasks, despite using fewer active parameters. Our results show that integrating a sparse MoE architecture into the training objective of masked diffusion language models still brings out MoE's strengths under efficient inference with few active parameters, and opens ample room for further exploration of diffusion language models. LLaDA-MoE models are available at Huggingface.
Analyzing the Evolution and Maintenance of ML Models on Hugging Face
Hugging Face (HF) has established itself as a crucial platform for the development and sharing of machine learning (ML) models. This repository mining study, which delves into more than 380,000 models using data gathered via the HF Hub API, aims to explore the community engagement, evolution, and maintenance around models hosted on HF, aspects that have yet to be comprehensively explored in the literature. We first examine the overall growth and popularity of HF, uncovering trends in ML domains, framework usage, authors grouping and the evolution of tags and datasets used. Through text analysis of model card descriptions, we also seek to identify prevalent themes and insights within the developer community. Our investigation further extends to the maintenance aspects of models, where we evaluate the maintenance status of ML models, classify commit messages into various categories (corrective, perfective, and adaptive), analyze the evolution across development stages of commits metrics and introduce a new classification system that estimates the maintenance status of models based on multiple attributes. This study aims to provide valuable insights about ML model maintenance and evolution that could inform future model development strategies on platforms like HF.
How do Machine Learning Models Change?
The proliferation of Machine Learning (ML) models and their open-source implementations has transformed Artificial Intelligence research and applications. Platforms like Hugging Face (HF) enable the development, sharing, and deployment of these models, fostering an evolving ecosystem. While previous studies have examined aspects of models hosted on platforms like HF, a comprehensive longitudinal study of how these models change remains underexplored. This study addresses this gap by utilizing both repository mining and longitudinal analysis methods to examine over 200,000 commits and 1,200 releases from over 50,000 models on HF. We replicate and extend an ML change taxonomy for classifying commits and utilize Bayesian networks to uncover patterns in commit and release activities over time. Our findings indicate that commit activities align with established data science methodologies, such as CRISP-DM, emphasizing iterative refinement and continuous improvement. Additionally, release patterns tend to consolidate significant updates, particularly in documentation, distinguishing between granular changes and milestone-based releases. Furthermore, projects with higher popularity prioritize infrastructure enhancements early in their lifecycle, and those with intensive collaboration practices exhibit improved documentation standards. These and other insights enhance the understanding of model changes on community platforms and provide valuable guidance for best practices in model maintenance.
LLM Pruning and Distillation in Practice: The Minitron Approach
We present a comprehensive report on compressing the Llama 3.1 8B and Mistral NeMo 12B models to 4B and 8B parameters, respectively, using pruning and distillation. We explore two distinct pruning strategies: (1) depth pruning and (2) joint hidden/attention/MLP (width) pruning, and evaluate the results on common benchmarks from the LM Evaluation Harness. The models are then aligned with NeMo Aligner and tested in instruct-tuned versions. This approach produces a compelling 4B model from Llama 3.1 8B and a state-of-the-art Mistral-NeMo-Minitron-8B (MN-Minitron-8B for brevity) model from Mistral NeMo 12B. We found that with no access to the original data, it is beneficial to slightly fine-tune teacher models on the distillation dataset. We open-source our base model weights on Hugging Face with a permissive license.
A Large-Scale Exploit Instrumentation Study of AI/ML Supply Chain Attacks in Hugging Face Models
The development of machine learning (ML) techniques has led to ample opportunities for developers to develop and deploy their own models. Hugging Face serves as an open source platform where developers can share and download other models in an effort to make ML development more collaborative. In order for models to be shared, they first need to be serialized. Certain Python serialization methods are considered unsafe, as they are vulnerable to object injection. This paper investigates the pervasiveness of these unsafe serialization methods across Hugging Face, and demonstrates through an exploitation approach, that models using unsafe serialization methods can be exploited and shared, creating an unsafe environment for ML developers. We investigate to what extent Hugging Face is able to flag repositories and files using unsafe serialization methods, and develop a technique to detect malicious models. Our results show that Hugging Face is home to a wide range of potentially vulnerable models.
fMoE: Fine-Grained Expert Offloading for Large Mixture-of-Experts Serving
Large Language Models (LLMs) have gained immense success in revolutionizing various applications, including content generation, search and recommendation, and AI-assisted operation. To reduce high training costs, Mixture-of-Experts (MoE) architecture has become a popular backbone for modern LLMs. However, despite the benefits, serving MoE-based LLMs experience severe memory inefficiency due to sparsely activated experts. Recent studies propose to offload inactive experts from GPU memory to CPU memory to improve the serving efficiency of MoE models. However, they either incur high inference latency or high model memory footprints due to coarse-grained designs. To tame the latency-memory trade-off in MoE serving, we present fMoE, a fine-grained expert offloading system for MoE serving that achieves low inference latency with memory efficiency. We design fMoE to extract fine-grained expert selection patterns from MoE models and semantic hints from input prompts to efficiently guide expert prefetching, caching, and offloading decisions. fMoE is prototyped on top of HuggingFace Transformers and deployed on a six-GPU testbed. Experiments with open-source MoE models and real-world workloads show that fMoE reduces inference latency by 47% and improves expert hit rate by 36% over state-of-the-art solutions.
Model Hubs and Beyond: Analyzing Model Popularity, Performance, and Documentation
With the massive surge in ML models on platforms like Hugging Face, users often lose track and struggle to choose the best model for their downstream tasks, frequently relying on model popularity indicated by download counts, likes, or recency. We investigate whether this popularity aligns with actual model performance and how the comprehensiveness of model documentation correlates with both popularity and performance. In our study, we evaluated a comprehensive set of 500 Sentiment Analysis models on Hugging Face. This evaluation involved massive annotation efforts, with human annotators completing nearly 80,000 annotations, alongside extensive model training and evaluation. Our findings reveal that model popularity does not necessarily correlate with performance. Additionally, we identify critical inconsistencies in model card reporting: approximately 80\% of the models analyzed lack detailed information about the model, training, and evaluation processes. Furthermore, about 88\% of model authors overstate their models' performance in the model cards. Based on our findings, we provide a checklist of guidelines for users to choose good models for downstream tasks.
SlimMoE: Structured Compression of Large MoE Models via Expert Slimming and Distillation
The Mixture of Experts (MoE) architecture has emerged as a powerful paradigm for scaling large language models (LLMs) while maintaining inference efficiency. However, their enormous memory requirements make them prohibitively expensive to fine-tune or deploy in resource-constrained environments. To address this challenge, we introduce SlimMoE, a multi-stage compression framework for transforming large MoE models into much smaller, efficient variants without incurring the prohibitive costs of training from scratch. Our method systematically reduces parameter counts by slimming experts and transferring knowledge through intermediate stages, effectively mitigating the performance degradation common in one-shot pruning approaches. Using this framework, we compress Phi 3.5-MoE (41.9B total/6.6B activated parameters) to create Phi-mini-MoE (7.6B total/2.4B activated parameters) and Phi-tiny-MoE (3.8B total/1.1B activated parameters) using only 400B tokens--less than 10% of the original model's training data. These compressed models can be fine-tuned on a single GPU (A100 for Phi-mini-MoE, A6000 for Phi-tiny-MoE), making them highly suitable for academic and resource-limited settings. Our experiments demonstrate that these compressed models outperform others of similar size and remain competitive with larger models. For instance, Phi-mini-MoE achieves similar or better performance to Phi-3-mini using only 2/3 of the activated parameters and yields comparable MMLU scores to Llama 3.1 8B despite having significantly lower latency. Our findings demonstrate that structured pruning combined with staged distillation offers an effective path to creating high-quality, compact MoE models, paving the way for broader adoption of MoE architectures. We make our models publicly available at https://huggingface.co/microsoft/Phi-mini-MoE-instruct and https://huggingface.co/microsoft/Phi-tiny-MoE-instruct .
BTLM-3B-8K: 7B Parameter Performance in a 3B Parameter Model
We introduce the Bittensor Language Model, called "BTLM-3B-8K", a new state-of-the-art 3 billion parameter open-source language model. BTLM-3B-8K was trained on 627B tokens from the SlimPajama dataset with a mixture of 2,048 and 8,192 context lengths. BTLM-3B-8K outperforms all existing 3B parameter models by 2-5.5% across downstream tasks. BTLM-3B-8K is even competitive with some 7B parameter models. Additionally, BTLM-3B-8K provides excellent long context performance, outperforming MPT-7B-8K and XGen-7B-8K on tasks up to 8,192 context length. We trained the model on a cleaned and deduplicated SlimPajama dataset; aggressively tuned the \textmu P hyperparameters and schedule; used ALiBi position embeddings; and adopted the SwiGLU nonlinearity. On Hugging Face, the most popular models have 7B parameters, indicating that users prefer the quality-size ratio of 7B models. Compacting the 7B parameter model to one with 3B parameters, with little performance impact, is an important milestone. BTLM-3B-8K needs only 3GB of memory with 4-bit precision and takes 2.5x less inference compute than 7B models, helping to open up access to a powerful language model on mobile and edge devices. BTLM-3B-8K is available under an Apache 2.0 license on Hugging Face: https://huggingface.co/cerebras/btlm-3b-8k-base.
Domain Adaptation of Llama3-70B-Instruct through Continual Pre-Training and Model Merging: A Comprehensive Evaluation
We conducted extensive experiments on domain adaptation of the Meta-Llama-3-70B-Instruct model on SEC data, exploring its performance on both general and domain-specific benchmarks. Our focus included continual pre-training (CPT) and model merging, aiming to enhance the model's domain-specific capabilities while mitigating catastrophic forgetting. Through this study, we evaluated the impact of integrating financial regulatory data into a robust language model and examined the effectiveness of our model merging techniques in preserving and improving the model's instructive abilities. The model is accessible at hugging face: https://huggingface.co/arcee-ai/Llama-3-SEC-Base, arcee-ai/Llama-3-SEC-Base. This is an intermediate checkpoint of our final model, which has seen 20B tokens so far. The full model is still in the process of training. This is a preprint technical report with thorough evaluations to understand the entire process.
Follow-Your-Emoji: Fine-Controllable and Expressive Freestyle Portrait Animation
We present Follow-Your-Emoji, a diffusion-based framework for portrait animation, which animates a reference portrait with target landmark sequences. The main challenge of portrait animation is to preserve the identity of the reference portrait and transfer the target expression to this portrait while maintaining temporal consistency and fidelity. To address these challenges, Follow-Your-Emoji equipped the powerful Stable Diffusion model with two well-designed technologies. Specifically, we first adopt a new explicit motion signal, namely expression-aware landmark, to guide the animation process. We discover this landmark can not only ensure the accurate motion alignment between the reference portrait and target motion during inference but also increase the ability to portray exaggerated expressions (i.e., large pupil movements) and avoid identity leakage. Then, we propose a facial fine-grained loss to improve the model's ability of subtle expression perception and reference portrait appearance reconstruction by using both expression and facial masks. Accordingly, our method demonstrates significant performance in controlling the expression of freestyle portraits, including real humans, cartoons, sculptures, and even animals. By leveraging a simple and effective progressive generation strategy, we extend our model to stable long-term animation, thus increasing its potential application value. To address the lack of a benchmark for this field, we introduce EmojiBench, a comprehensive benchmark comprising diverse portrait images, driving videos, and landmarks. We show extensive evaluations on EmojiBench to verify the superiority of Follow-Your-Emoji.
Automated categorization of pre-trained models for software engineering: A case study with a Hugging Face dataset
Software engineering (SE) activities have been revolutionized by the advent of pre-trained models (PTMs), defined as large machine learning (ML) models that can be fine-tuned to perform specific SE tasks. However, users with limited expertise may need help to select the appropriate model for their current task. To tackle the issue, the Hugging Face (HF) platform simplifies the use of PTMs by collecting, storing, and curating several models. Nevertheless, the platform currently lacks a comprehensive categorization of PTMs designed specifically for SE, i.e., the existing tags are more suited to generic ML categories. This paper introduces an approach to address this gap by enabling the automatic classification of PTMs for SE tasks. First, we utilize a public dump of HF to extract PTMs information, including model documentation and associated tags. Then, we employ a semi-automated method to identify SE tasks and their corresponding PTMs from existing literature. The approach involves creating an initial mapping between HF tags and specific SE tasks, using a similarity-based strategy to identify PTMs with relevant tags. The evaluation shows that model cards are informative enough to classify PTMs considering the pipeline tag. Moreover, we provide a mapping between SE tasks and stored PTMs by relying on model names.
Economies of Open Intelligence: Tracing Power & Participation in the Model Ecosystem
Since 2019, the Hugging Face Model Hub has been the primary global platform for sharing open weight AI models. By releasing a dataset of the complete history of weekly model downloads (June 2020-August 2025) alongside model metadata, we provide the most rigorous examination to-date of concentration dynamics and evolving characteristics in the open model economy. Our analysis spans 851,000 models, over 200 aggregated attributes per model, and 2.2B downloads. We document a fundamental rebalancing of economic power: US open-weight industry dominance by Google, Meta, and OpenAI has declined sharply in favor of unaffiliated developers, community organizations, and, as of 2025, Chinese industry, with DeepSeek and Qwen models potentially heralding a new consolidation of market power. We identify statistically significant shifts in model properties, a 17X increase in average model size, rapid growth in multimodal generation (3.4X), quantization (5X), and mixture-of-experts architectures (7X), alongside concerning declines in data transparency, with open weights models surpassing truly open source models for the first time in 2025. We expose a new layer of developer intermediaries that has emerged, focused on quantizing and adapting base models for both efficiency and artistic expression. To enable continued research and oversight, we release the complete dataset with an interactive dashboard for real-time monitoring of concentration dynamics and evolving properties in the open model economy.
Jasper and Stella: distillation of SOTA embedding models
A crucial component of many deep learning applications (such as FAQ and RAG) is dense retrieval, in which embedding models are used to convert raw text to numerical vectors and then get the most similar text by MIPS (Maximum Inner Product Search). Some text embedding benchmarks (e.g. MTEB, BEIR, and AIR-Bench) have been established to evaluate embedding models accurately. Thanks to these benchmarks, we can use SOTA models; however, the deployment and application of these models in industry were hampered by their large vector dimensions and numerous parameters. To alleviate this problem, 1) we present a distillation technique that can enable a smaller student model to achieve good performance. 2) Inspired by MRL we present a training approach of reducing the vector dimensions based on its own vectors or its teacher vectors. 3) We do simple yet effective alignment training between images and text to make our model a multimodal encoder. We trained Stella and Jasper models using the technologies above and achieved high scores on the MTEB leaderboard. We release the model and data at Hugging Face Hub (https://huggingface.co/infgrad/jasper_en_vision_language_v1) and the training logs are at https://api.wandb.ai/links/dunnzhang0/z8jqoqpb.
Every FLOP Counts: Scaling a 300B Mixture-of-Experts LING LLM without Premium GPUs
In this technical report, we tackle the challenges of training large-scale Mixture of Experts (MoE) models, focusing on overcoming cost inefficiency and resource limitations prevalent in such systems. To address these issues, we present two differently sized MoE large language models (LLMs), namely Ling-Lite and Ling-Plus (referred to as "Bailing" in Chinese, spelled Bail\'ing in Pinyin). Ling-Lite contains 16.8 billion parameters with 2.75 billion activated parameters, while Ling-Plus boasts 290 billion parameters with 28.8 billion activated parameters. Both models exhibit comparable performance to leading industry benchmarks. This report offers actionable insights to improve the efficiency and accessibility of AI development in resource-constrained settings, promoting more scalable and sustainable technologies. Specifically, to reduce training costs for large-scale MoE models, we propose innovative methods for (1) optimization of model architecture and training processes, (2) refinement of training anomaly handling, and (3) enhancement of model evaluation efficiency. Additionally, leveraging high-quality data generated from knowledge graphs, our models demonstrate superior capabilities in tool use compared to other models. Ultimately, our experimental findings demonstrate that a 300B MoE LLM can be effectively trained on lower-performance devices while achieving comparable performance to models of a similar scale, including dense and MoE models. Compared to high-performance devices, utilizing a lower-specification hardware system during the pre-training phase demonstrates significant cost savings, reducing computing costs by approximately 20%. The models can be accessed at https://huggingface.co/inclusionAI.
Towards Semantic Versioning of Open Pre-trained Language Model Releases on Hugging Face
The proliferation of open Pre-trained Language Models (PTLMs) on model registry platforms like Hugging Face (HF) presents both opportunities and challenges for companies building products around them. Similar to traditional software dependencies, PTLMs continue to evolve after a release. However, the current state of release practices of PTLMs on model registry platforms are plagued by a variety of inconsistencies, such as ambiguous naming conventions and inaccessible model training documentation. Given the knowledge gap on current PTLM release practices, our empirical study uses a mixed-methods approach to analyze the releases of 52,227 PTLMs on the most well-known model registry, HF. Our results reveal 148 different naming practices for PTLM releases, with 40.87% of changes to model weight files not represented in the adopted name-based versioning practice or their documentation. In addition, we identified that the 52,227 PTLMs are derived from only 299 different base models (the modified original models used to create 52,227 PTLMs), with Fine-tuning and Quantization being the most prevalent modification methods applied to these base models. Significant gaps in release transparency, in terms of training dataset specifications and model card availability, still exist, highlighting the need for standardized documentation. While we identified a model naming practice explicitly differentiating between major and minor PTLM releases, we did not find any significant difference in the types of changes that went into either type of releases, suggesting that major/minor version numbers for PTLMs often are chosen arbitrarily. Our findings provide valuable insights to improve PTLM release practices, nudging the field towards more formal semantic versioning practices.
HiFace: High-Fidelity 3D Face Reconstruction by Learning Static and Dynamic Details
3D Morphable Models (3DMMs) demonstrate great potential for reconstructing faithful and animatable 3D facial surfaces from a single image. The facial surface is influenced by the coarse shape, as well as the static detail (e,g., person-specific appearance) and dynamic detail (e.g., expression-driven wrinkles). Previous work struggles to decouple the static and dynamic details through image-level supervision, leading to reconstructions that are not realistic. In this paper, we aim at high-fidelity 3D face reconstruction and propose HiFace to explicitly model the static and dynamic details. Specifically, the static detail is modeled as the linear combination of a displacement basis, while the dynamic detail is modeled as the linear interpolation of two displacement maps with polarized expressions. We exploit several loss functions to jointly learn the coarse shape and fine details with both synthetic and real-world datasets, which enable HiFace to reconstruct high-fidelity 3D shapes with animatable details. Extensive quantitative and qualitative experiments demonstrate that HiFace presents state-of-the-art reconstruction quality and faithfully recovers both the static and dynamic details. Our project page can be found at https://project-hiface.github.io.
APIGen-MT: Agentic Pipeline for Multi-Turn Data Generation via Simulated Agent-Human Interplay
Training effective AI agents for multi-turn interactions requires high-quality data that captures realistic human-agent dynamics, yet such data is scarce and expensive to collect manually. We introduce APIGen-MT, a two-phase framework that generates verifiable and diverse multi-turn agent data. In the first phase, our agentic pipeline produces detailed task blueprints with ground-truth actions, leveraging a committee of LLM reviewers and iterative feedback loops. These blueprints are then transformed into complete interaction trajectories through simulated human-agent interplay. We train a family of models -- the xLAM-2-fc-r series with sizes ranging from 1B to 70B parameters. Our models outperform frontier models such as GPT-4o and Claude 3.5 on tau-bench and BFCL benchmarks, with the smaller models surpassing their larger counterparts, particularly in multi-turn settings, while maintaining superior consistency across multiple trials. Comprehensive experiments demonstrate that our verified blueprint-to-details approach yields high-quality training data, enabling the development of more reliable, efficient, and capable agents. We open-source both the synthetic data collected and the trained xLAM-2-fc-r models to advance research in AI agents. Models are available on HuggingFace at https://huggingface.co/collections/Salesforce/xlam-2-67ef5be12949d8dcdae354c4 and project website is https://apigen-mt.github.io
What's documented in AI? Systematic Analysis of 32K AI Model Cards
The rapid proliferation of AI models has underscored the importance of thorough documentation, as it enables users to understand, trust, and effectively utilize these models in various applications. Although developers are encouraged to produce model cards, it's not clear how much information or what information these cards contain. In this study, we conduct a comprehensive analysis of 32,111 AI model documentations on Hugging Face, a leading platform for distributing and deploying AI models. Our investigation sheds light on the prevailing model card documentation practices. Most of the AI models with substantial downloads provide model cards, though the cards have uneven informativeness. We find that sections addressing environmental impact, limitations, and evaluation exhibit the lowest filled-out rates, while the training section is the most consistently filled-out. We analyze the content of each section to characterize practitioners' priorities. Interestingly, there are substantial discussions of data, sometimes with equal or even greater emphasis than the model itself. To evaluate the impact of model cards, we conducted an intervention study by adding detailed model cards to 42 popular models which had no or sparse model cards previously. We find that adding model cards is moderately correlated with an increase weekly download rates. Our study opens up a new perspective for analyzing community norms and practices for model documentation through large-scale data science and linguistics analysis.
Charting and Navigating Hugging Face's Model Atlas
As there are now millions of publicly available neural networks, searching and analyzing large model repositories becomes increasingly important. Navigating so many models requires an atlas, but as most models are poorly documented charting such an atlas is challenging. To explore the hidden potential of model repositories, we chart a preliminary atlas representing the documented fraction of Hugging Face. It provides stunning visualizations of the model landscape and evolution. We demonstrate several applications of this atlas including predicting model attributes (e.g., accuracy), and analyzing trends in computer vision models. However, as the current atlas remains incomplete, we propose a method for charting undocumented regions. Specifically, we identify high-confidence structural priors based on dominant real-world model training practices. Leveraging these priors, our approach enables accurate mapping of previously undocumented areas of the atlas. We publicly release our datasets, code, and interactive atlas.
DEGAS: Detailed Expressions on Full-Body Gaussian Avatars
Although neural rendering has made significant advances in creating lifelike, animatable full-body and head avatars, incorporating detailed expressions into full-body avatars remains largely unexplored. We present DEGAS, the first 3D Gaussian Splatting (3DGS)-based modeling method for full-body avatars with rich facial expressions. Trained on multiview videos of a given subject, our method learns a conditional variational autoencoder that takes both the body motion and facial expression as driving signals to generate Gaussian maps in the UV layout. To drive the facial expressions, instead of the commonly used 3D Morphable Models (3DMMs) in 3D head avatars, we propose to adopt the expression latent space trained solely on 2D portrait images, bridging the gap between 2D talking faces and 3D avatars. Leveraging the rendering capability of 3DGS and the rich expressiveness of the expression latent space, the learned avatars can be reenacted to reproduce photorealistic rendering images with subtle and accurate facial expressions. Experiments on an existing dataset and our newly proposed dataset of full-body talking avatars demonstrate the efficacy of our method. We also propose an audio-driven extension of our method with the help of 2D talking faces, opening new possibilities for interactive AI agents.
Anatomy of a Machine Learning Ecosystem: 2 Million Models on Hugging Face
Many have observed that the development and deployment of generative machine learning (ML) and artificial intelligence (AI) models follow a distinctive pattern in which pre-trained models are adapted and fine-tuned for specific downstream tasks. However, there is limited empirical work that examines the structure of these interactions. This paper analyzes 1.86 million models on Hugging Face, a leading peer production platform for model development. Our study of model family trees -- networks that connect fine-tuned models to their base or parent -- reveals sprawling fine-tuning lineages that vary widely in size and structure. Using an evolutionary biology lens to study ML models, we use model metadata and model cards to measure the genetic similarity and mutation of traits over model families. We find that models tend to exhibit a family resemblance, meaning their genetic markers and traits exhibit more overlap when they belong to the same model family. However, these similarities depart in certain ways from standard models of asexual reproduction, because mutations are fast and directed, such that two `sibling' models tend to exhibit more similarity than parent/child pairs. Further analysis of the directional drifts of these mutations reveals qualitative insights about the open machine learning ecosystem: Licenses counter-intuitively drift from restrictive, commercial licenses towards permissive or copyleft licenses, often in violation of upstream license's terms; models evolve from multi-lingual compatibility towards english-only compatibility; and model cards reduce in length and standardize by turning, more often, to templates and automatically generated text. Overall, this work takes a step toward an empirically grounded understanding of model fine-tuning and suggests that ecological models and methods can yield novel scientific insights.
Follow-Your-Emoji-Faster: Towards Efficient, Fine-Controllable, and Expressive Freestyle Portrait Animation
We present Follow-Your-Emoji-Faster, an efficient diffusion-based framework for freestyle portrait animation driven by facial landmarks. The main challenges in this task are preserving the identity of the reference portrait, accurately transferring target expressions, and maintaining long-term temporal consistency while ensuring generation efficiency. To address identity preservation and accurate expression retargeting, we enhance Stable Diffusion with two key components: a expression-aware landmarks as explicit motion signals, which improve motion alignment, support exaggerated expressions, and reduce identity leakage; and a fine-grained facial loss that leverages both expression and facial masks to better capture subtle expressions and faithfully preserve the reference appearance. With these components, our model supports controllable and expressive animation across diverse portrait types, including real faces, cartoons, sculptures, and animals. However, diffusion-based frameworks typically struggle to efficiently generate long-term stable animation results, which remains a core challenge in this task. To address this, we propose a progressive generation strategy for stable long-term animation, and introduce a Taylor-interpolated cache, achieving a 2.6X lossless acceleration. These two strategies ensure that our method produces high-quality results efficiently, making it user-friendly and accessible. Finally, we introduce EmojiBench++, a more comprehensive benchmark comprising diverse portraits, driving videos, and landmark sequences. Extensive evaluations on EmojiBench++ demonstrate that Follow-Your-Emoji-Faster achieves superior performance in both animation quality and controllability. The code, training dataset and benchmark will be found in https://follow-your-emoji.github.io/.
GaFET: Learning Geometry-aware Facial Expression Translation from In-The-Wild Images
While current face animation methods can manipulate expressions individually, they suffer from several limitations. The expressions manipulated by some motion-based facial reenactment models are crude. Other ideas modeled with facial action units cannot generalize to arbitrary expressions not covered by annotations. In this paper, we introduce a novel Geometry-aware Facial Expression Translation (GaFET) framework, which is based on parametric 3D facial representations and can stably decoupled expression. Among them, a Multi-level Feature Aligned Transformer is proposed to complement non-geometric facial detail features while addressing the alignment challenge of spatial features. Further, we design a De-expression model based on StyleGAN, in order to reduce the learning difficulty of GaFET in unpaired "in-the-wild" images. Extensive qualitative and quantitative experiments demonstrate that we achieve higher-quality and more accurate facial expression transfer results compared to state-of-the-art methods, and demonstrate applicability of various poses and complex textures. Besides, videos or annotated training data are omitted, making our method easier to use and generalize.
MVD-HuGaS: Human Gaussians from a Single Image via 3D Human Multi-view Diffusion Prior
3D human reconstruction from a single image is a challenging problem and has been exclusively studied in the literature. Recently, some methods have resorted to diffusion models for guidance, optimizing a 3D representation via Score Distillation Sampling(SDS) or generating one back-view image for facilitating reconstruction. However, these methods tend to produce unsatisfactory artifacts (e.g. flattened human structure or over-smoothing results caused by inconsistent priors from multiple views) and struggle with real-world generalization in the wild. In this work, we present MVD-HuGaS, enabling free-view 3D human rendering from a single image via a multi-view human diffusion model. We first generate multi-view images from the single reference image with an enhanced multi-view diffusion model, which is well fine-tuned on high-quality 3D human datasets to incorporate 3D geometry priors and human structure priors. To infer accurate camera poses from the sparse generated multi-view images for reconstruction, an alignment module is introduced to facilitate joint optimization of 3D Gaussians and camera poses. Furthermore, we propose a depth-based Facial Distortion Mitigation module to refine the generated facial regions, thereby improving the overall fidelity of the reconstruction.Finally, leveraging the refined multi-view images, along with their accurate camera poses, MVD-HuGaS optimizes the 3D Gaussians of the target human for high-fidelity free-view renderings. Extensive experiments on Thuman2.0 and 2K2K datasets show that the proposed MVD-HuGaS achieves state-of-the-art performance on single-view 3D human rendering.
VARCO-VISION-2.0 Technical Report
We introduce VARCO-VISION-2.0, an open-weight bilingual vision-language model (VLM) for Korean and English with improved capabilities compared to the previous model VARCO-VISION-14B. The model supports multi-image understanding for complex inputs such as documents, charts, and tables, and delivers layoutaware OCR by predicting both textual content and its spatial location. Trained with a four-stage curriculum with memory-efficient techniques, the model achieves enhanced multimodal alignment, while preserving core language abilities and improving safety via preference optimization. Extensive benchmark evaluations demonstrate strong spatial grounding and competitive results for both languages, with the 14B model achieving 8th place on the OpenCompass VLM leaderboard among models of comparable scale. Alongside the 14B-scale model, we release a 1.7B version optimized for on-device deployment. We believe these models advance the development of bilingual VLMs and their practical applications. Two variants of VARCO-VISION-2.0 are available at Hugging Face: a full-scale 14B model and a lightweight 1.7B model.
Stable LM 2 1.6B Technical Report
We introduce StableLM 2 1.6B, the first in a new generation of our language model series. In this technical report, we present in detail the data and training procedure leading to the base and instruction-tuned versions of StableLM 2 1.6B. The weights for both models are available via Hugging Face for anyone to download and use. The report contains thorough evaluations of these models, including zero- and few-shot benchmarks, multilingual benchmarks, and the MT benchmark focusing on multi-turn dialogues. At the time of publishing this report, StableLM 2 1.6B was the state-of-the-art open model under 2B parameters by a significant margin. Given its appealing small size, we also provide throughput measurements on a number of edge devices. In addition, we open source several quantized checkpoints and provide their performance metrics compared to the original model.
Tryage: Real-time, intelligent Routing of User Prompts to Large Language Models
The introduction of the transformer architecture and the self-attention mechanism has led to an explosive production of language models trained on specific downstream tasks and data domains. With over 200, 000 models in the Hugging Face ecosystem, users grapple with selecting and optimizing models to suit multifaceted workflows and data domains while addressing computational, security, and recency concerns. There is an urgent need for machine learning frameworks that can eliminate the burden of model selection and customization and unleash the incredible power of the vast emerging model library for end users. Here, we propose a context-aware routing system, Tryage, that leverages a language model router for optimal selection of expert models from a model library based on analysis of individual input prompts. Inspired by the thalamic router in the brain, Tryage employs a perceptive router to predict down-stream model performance on prompts and, then, makes a routing decision using an objective function that integrates performance predictions with user goals and constraints that are incorporated through flags (e.g., model size, model recency). Tryage allows users to explore a Pareto front and automatically trade-off between task accuracy and secondary goals including minimization of model size, recency, security, verbosity, and readability. Across heterogeneous data sets that include code, text, clinical data, and patents, the Tryage framework surpasses Gorilla and GPT3.5 turbo in dynamic model selection identifying the optimal model with an accuracy of 50.9% , compared to 23.6% by GPT 3.5 Turbo and 10.8% by Gorilla. Conceptually, Tryage demonstrates how routing models can be applied to program and control the behavior of multi-model LLM systems to maximize efficient use of the expanding and evolving language model ecosystem.
3D Gaussian Blendshapes for Head Avatar Animation
We introduce 3D Gaussian blendshapes for modeling photorealistic head avatars. Taking a monocular video as input, we learn a base head model of neutral expression, along with a group of expression blendshapes, each of which corresponds to a basis expression in classical parametric face models. Both the neutral model and expression blendshapes are represented as 3D Gaussians, which contain a few properties to depict the avatar appearance. The avatar model of an arbitrary expression can be effectively generated by combining the neutral model and expression blendshapes through linear blending of Gaussians with the expression coefficients. High-fidelity head avatar animations can be synthesized in real time using Gaussian splatting. Compared to state-of-the-art methods, our Gaussian blendshape representation better captures high-frequency details exhibited in input video, and achieves superior rendering performance.
Learning Personalized High Quality Volumetric Head Avatars from Monocular RGB Videos
We propose a method to learn a high-quality implicit 3D head avatar from a monocular RGB video captured in the wild. The learnt avatar is driven by a parametric face model to achieve user-controlled facial expressions and head poses. Our hybrid pipeline combines the geometry prior and dynamic tracking of a 3DMM with a neural radiance field to achieve fine-grained control and photorealism. To reduce over-smoothing and improve out-of-model expressions synthesis, we propose to predict local features anchored on the 3DMM geometry. These learnt features are driven by 3DMM deformation and interpolated in 3D space to yield the volumetric radiance at a designated query point. We further show that using a Convolutional Neural Network in the UV space is critical in incorporating spatial context and producing representative local features. Extensive experiments show that we are able to reconstruct high-quality avatars, with more accurate expression-dependent details, good generalization to out-of-training expressions, and quantitatively superior renderings compared to other state-of-the-art approaches.
Multimodal Banking Dataset: Understanding Client Needs through Event Sequences
Financial organizations collect a huge amount of data about clients that typically has a temporal (sequential) structure and is collected from various sources (modalities). Due to privacy issues, there are no large-scale open-source multimodal datasets of event sequences, which significantly limits the research in this area. In this paper, we present the industrial-scale publicly available multimodal banking dataset, MBD, that contains more than 1.5M corporate clients with several modalities: 950M bank transactions, 1B geo position events, 5M embeddings of dialogues with technical support and monthly aggregated purchases of four bank's products. All entries are properly anonymized from real proprietary bank data. Using this dataset, we introduce a novel benchmark with two business tasks: campaigning (purchase prediction in the next month) and matching of clients. We provide numerical results that demonstrate the superiority of our multi-modal baselines over single-modal techniques for each task. As a result, the proposed dataset can open new perspectives and facilitate the future development of practically important large-scale multimodal algorithms for event sequences. HuggingFace Link: https://huggingface.co/datasets/ai-lab/MBD Github Link: https://github.com/Dzhambo/MBD
OpenELM: An Efficient Language Model Family with Open-source Training and Inference Framework
The reproducibility and transparency of large language models are crucial for advancing open research, ensuring the trustworthiness of results, and enabling investigations into data and model biases, as well as potential risks. To this end, we release OpenELM, a state-of-the-art open language model. OpenELM uses a layer-wise scaling strategy to efficiently allocate parameters within each layer of the transformer model, leading to enhanced accuracy. For example, with a parameter budget of approximately one billion parameters, OpenELM exhibits a 2.36% improvement in accuracy compared to OLMo while requiring 2times fewer pre-training tokens. Diverging from prior practices that only provide model weights and inference code, and pre-train on private datasets, our release includes the complete framework for training and evaluation of the language model on publicly available datasets, including training logs, multiple checkpoints, and pre-training configurations. We also release code to convert models to MLX library for inference and fine-tuning on Apple devices. This comprehensive release aims to empower and strengthen the open research community, paving the way for future open research endeavors. Our source code along with pre-trained model weights and training recipes is available at https://github.com/apple/corenet. Additionally, \model models can be found on HuggingFace at: https://huggingface.co/apple/OpenELM.
Lessons Learned from Mining the Hugging Face Repository
The rapidly evolving fields of Machine Learning (ML) and Artificial Intelligence have witnessed the emergence of platforms like Hugging Face (HF) as central hubs for model development and sharing. This experience report synthesizes insights from two comprehensive studies conducted on HF, focusing on carbon emissions and the evolutionary and maintenance aspects of ML models. Our objective is to provide a practical guide for future researchers embarking on mining software repository studies within the HF ecosystem to enhance the quality of these studies. We delve into the intricacies of the replication package used in our studies, highlighting the pivotal tools and methodologies that facilitated our analysis. Furthermore, we propose a nuanced stratified sampling strategy tailored for the diverse HF Hub dataset, ensuring a representative and comprehensive analytical approach. The report also introduces preliminary guidelines, transitioning from repository mining to cohort studies, to establish causality in repository mining studies, particularly within the ML model of HF context. This transition is inspired by existing frameworks and is adapted to suit the unique characteristics of the HF model ecosystem. Our report serves as a guiding framework for researchers, contributing to the responsible and sustainable advancement of ML, and fostering a deeper understanding of the broader implications of ML models.
BlendFields: Few-Shot Example-Driven Facial Modeling
Generating faithful visualizations of human faces requires capturing both coarse and fine-level details of the face geometry and appearance. Existing methods are either data-driven, requiring an extensive corpus of data not publicly accessible to the research community, or fail to capture fine details because they rely on geometric face models that cannot represent fine-grained details in texture with a mesh discretization and linear deformation designed to model only a coarse face geometry. We introduce a method that bridges this gap by drawing inspiration from traditional computer graphics techniques. Unseen expressions are modeled by blending appearance from a sparse set of extreme poses. This blending is performed by measuring local volumetric changes in those expressions and locally reproducing their appearance whenever a similar expression is performed at test time. We show that our method generalizes to unseen expressions, adding fine-grained effects on top of smooth volumetric deformations of a face, and demonstrate how it generalizes beyond faces.
DreamFace: Progressive Generation of Animatable 3D Faces under Text Guidance
Emerging Metaverse applications demand accessible, accurate, and easy-to-use tools for 3D digital human creations in order to depict different cultures and societies as if in the physical world. Recent large-scale vision-language advances pave the way to for novices to conveniently customize 3D content. However, the generated CG-friendly assets still cannot represent the desired facial traits for human characteristics. In this paper, we present DreamFace, a progressive scheme to generate personalized 3D faces under text guidance. It enables layman users to naturally customize 3D facial assets that are compatible with CG pipelines, with desired shapes, textures, and fine-grained animation capabilities. From a text input to describe the facial traits, we first introduce a coarse-to-fine scheme to generate the neutral facial geometry with a unified topology. We employ a selection strategy in the CLIP embedding space, and subsequently optimize both the details displacements and normals using Score Distillation Sampling from generic Latent Diffusion Model. Then, for neutral appearance generation, we introduce a dual-path mechanism, which combines the generic LDM with a novel texture LDM to ensure both the diversity and textural specification in the UV space. We also employ a two-stage optimization to perform SDS in both the latent and image spaces to significantly provides compact priors for fine-grained synthesis. Our generated neutral assets naturally support blendshapes-based facial animations. We further improve the animation ability with personalized deformation characteristics by learning the universal expression prior using the cross-identity hypernetwork. Notably, DreamFace can generate of realistic 3D facial assets with physically-based rendering quality and rich animation ability from video footage, even for fashion icons or exotic characters in cartoons and fiction movies.
Enhancing Efficiency in Sparse Models with Sparser Selection
Sparse models, including sparse Mixture-of-Experts (MoE) models, have emerged as an effective approach for scaling Transformer models. However, they often suffer from computational inefficiency since a significant number of parameters are unnecessarily involved in computations via multiplying values by zero or low activation values. To address this issue, we present \tool, a novel MoE designed to enhance both the efficacy and efficiency of sparse MoE models. \tool leverages small experts and a threshold-based router to enable tokens to selectively engage only essential parameters. Our extensive experiments on language modeling and machine translation tasks demonstrate that \tool can enhance model performance while decreasing the computation load at MoE layers by over 50\% without sacrificing performance. Furthermore, we present the versatility of \tool by applying it to dense models, enabling sparse computation during inference. We provide a comprehensive analysis and make our code available at https://anonymous.4open.science/r/XMoE.
On the Origin of LLMs: An Evolutionary Tree and Graph for 15,821 Large Language Models
Since late 2022, Large Language Models (LLMs) have become very prominent with LLMs like ChatGPT and Bard receiving millions of users. Hundreds of new LLMs are announced each week, many of which are deposited to Hugging Face, a repository of machine learning models and datasets. To date, nearly 16,000 Text Generation models have been uploaded to the site. Given the huge influx of LLMs, it is of interest to know which LLM backbones, settings, training methods, and families are popular or trending. However, there is no comprehensive index of LLMs available. We take advantage of the relatively systematic nomenclature of Hugging Face LLMs to perform hierarchical clustering and identify communities amongst LLMs using n-grams and term frequency-inverse document frequency. Our methods successfully identify families of LLMs and accurately cluster LLMs into meaningful subgroups. We present a public web application to navigate and explore Constellation, our atlas of 15,821 LLMs. Constellation rapidly generates a variety of visualizations, namely dendrograms, graphs, word clouds, and scatter plots. Constellation is available at the following link: https://constellation.sites.stanford.edu/.
Thai Wav2Vec2.0 with CommonVoice V8
Recently, Automatic Speech Recognition (ASR), a system that converts audio into text, has caught a lot of attention in the machine learning community. Thus, a lot of publicly available models were released in HuggingFace. However, most of these ASR models are available in English; only a minority of the models are available in Thai. Additionally, most of the Thai ASR models are closed-sourced, and the performance of existing open-sourced models lacks robustness. To address this problem, we train a new ASR model on a pre-trained XLSR-Wav2Vec model with the Thai CommonVoice corpus V8 and train a trigram language model to boost the performance of our ASR model. We hope that our models will be beneficial to individuals and the ASR community in Thailand.
StyleMM: Stylized 3D Morphable Face Model via Text-Driven Aligned Image Translation
We introduce StyleMM, a novel framework that can construct a stylized 3D Morphable Model (3DMM) based on user-defined text descriptions specifying a target style. Building upon a pre-trained mesh deformation network and a texture generator for original 3DMM-based realistic human faces, our approach fine-tunes these models using stylized facial images generated via text-guided image-to-image (i2i) translation with a diffusion model, which serve as stylization targets for the rendered mesh. To prevent undesired changes in identity, facial alignment, or expressions during i2i translation, we introduce a stylization method that explicitly preserves the facial attributes of the source image. By maintaining these critical attributes during image stylization, the proposed approach ensures consistent 3D style transfer across the 3DMM parameter space through image-based training. Once trained, StyleMM enables feed-forward generation of stylized face meshes with explicit control over shape, expression, and texture parameters, producing meshes with consistent vertex connectivity and animatability. Quantitative and qualitative evaluations demonstrate that our approach outperforms state-of-the-art methods in terms of identity-level facial diversity and stylization capability. The code and videos are available at [kwanyun.github.io/stylemm_page](kwanyun.github.io/stylemm_page).
GAIA: A Foundation Model for Operational Atmospheric Dynamics
We present the GAIA (Geospatial Artificial Intelligence for Atmospheres) Foundation Model, a novel model that combines masked autoencoders (MAE) and self-DIstillation with NO labels (DINO) for analyzing global atmospheric patterns in satellite imagery. By integrating these complementary self-supervised learning approaches, our model simultaneously captures both local features and global dependencies. We address two critical challenges in satellite data analysis: reconstructing missing regions and estimating precipitation patterns as our first downstream tasks. The model demonstrates superior temporal pattern capture compared to standard MAE approaches, while maintaining robust performance in downstream tasks. Our experimental results show strong gap-filling capabilities across varying mask ratios and accurate precipitation estimation with limited training data, achieving a false alarm ratio of 0.088 and structural similarity of 0.881. This work represents an advancement in self-supervised learning for atmospheric science, providing a foundation for improved weather monitoring and climate analysis. The trained model weights and accompanying code are publicly available as open-source on Hugging Face here: https://huggingface.co/bcg-usra-nasa-gaia/GAIA-v1.
Facial Dynamics in Video: Instruction Tuning for Improved Facial Expression Perception and Contextual Awareness
Facial expression captioning has found widespread application across various domains. Recently, the emergence of video Multimodal Large Language Models (MLLMs) has shown promise in general video understanding tasks. However, describing facial expressions within videos poses two major challenges for these models: (1) the lack of adequate datasets and benchmarks, and (2) the limited visual token capacity of video MLLMs. To address these issues, this paper introduces a new instruction-following dataset tailored for dynamic facial expression caption. The dataset comprises 5,033 high-quality video clips annotated manually, containing over 700,000 tokens. Its purpose is to improve the capability of video MLLMs to discern subtle facial nuances. Furthermore, we propose FaceTrack-MM, which leverages a limited number of tokens to encode the main character's face. This model demonstrates superior performance in tracking faces and focusing on the facial expressions of the main characters, even in intricate multi-person scenarios. Additionally, we introduce a novel evaluation metric combining event extraction, relation classification, and the longest common subsequence (LCS) algorithm to assess the content consistency and temporal sequence consistency of generated text. Moreover, we present FEC-Bench, a benchmark designed to assess the performance of existing video MLLMs in this specific task. All data and source code will be made publicly available.
EMOPortraits: Emotion-enhanced Multimodal One-shot Head Avatars
Head avatars animated by visual signals have gained popularity, particularly in cross-driving synthesis where the driver differs from the animated character, a challenging but highly practical approach. The recently presented MegaPortraits model has demonstrated state-of-the-art results in this domain. We conduct a deep examination and evaluation of this model, with a particular focus on its latent space for facial expression descriptors, and uncover several limitations with its ability to express intense face motions. To address these limitations, we propose substantial changes in both training pipeline and model architecture, to introduce our EMOPortraits model, where we: Enhance the model's capability to faithfully support intense, asymmetric face expressions, setting a new state-of-the-art result in the emotion transfer task, surpassing previous methods in both metrics and quality. Incorporate speech-driven mode to our model, achieving top-tier performance in audio-driven facial animation, making it possible to drive source identity through diverse modalities, including visual signal, audio, or a blend of both. We propose a novel multi-view video dataset featuring a wide range of intense and asymmetric facial expressions, filling the gap with absence of such data in existing datasets.
Models Are Codes: Towards Measuring Malicious Code Poisoning Attacks on Pre-trained Model Hubs
The proliferation of pre-trained models (PTMs) and datasets has led to the emergence of centralized model hubs like Hugging Face, which facilitate collaborative development and reuse. However, recent security reports have uncovered vulnerabilities and instances of malicious attacks within these platforms, highlighting growing security concerns. This paper presents the first systematic study of malicious code poisoning attacks on pre-trained model hubs, focusing on the Hugging Face platform. We conduct a comprehensive threat analysis, develop a taxonomy of model formats, and perform root cause analysis of vulnerable formats. While existing tools like Fickling and ModelScan offer some protection, they face limitations in semantic-level analysis and comprehensive threat detection. To address these challenges, we propose MalHug, an end-to-end pipeline tailored for Hugging Face that combines dataset loading script extraction, model deserialization, in-depth taint analysis, and heuristic pattern matching to detect and classify malicious code poisoning attacks in datasets and models. In collaboration with Ant Group, a leading financial technology company, we have implemented and deployed MalHug on a mirrored Hugging Face instance within their infrastructure, where it has been operational for over three months. During this period, MalHug has monitored more than 705K models and 176K datasets, uncovering 91 malicious models and 9 malicious dataset loading scripts. These findings reveal a range of security threats, including reverse shell, browser credential theft, and system reconnaissance. This work not only bridges a critical gap in understanding the security of the PTM supply chain but also provides a practical, industry-tested solution for enhancing the security of pre-trained model hubs.
Benchmarking Recommendation, Classification, and Tracing Based on Hugging Face Knowledge Graph
The rapid growth of open source machine learning (ML) resources, such as models and datasets, has accelerated IR research. However, existing platforms like Hugging Face do not explicitly utilize structured representations, limiting advanced queries and analyses such as tracing model evolution and recommending relevant datasets. To fill the gap, we construct HuggingKG, the first large-scale knowledge graph built from the Hugging Face community for ML resource management. With 2.6 million nodes and 6.2 million edges, HuggingKG captures domain-specific relations and rich textual attributes. It enables us to further present HuggingBench, a multi-task benchmark with three novel test collections for IR tasks including resource recommendation, classification, and tracing. Our experiments reveal unique characteristics of HuggingKG and the derived tasks. Both resources are publicly available, expected to advance research in open source resource sharing and management.
MMMModal -- Multi-Images Multi-Audio Multi-turn Multi-Modal
Our contribution introduces a groundbreaking multimodal large language model designed to comprehend multi-images, multi-audio, and multi-images-multi-audio within a single multiturn session. Leveraging state-of-the-art models, we utilize the SigLIP encoder for visual inputs and the Whisper Encoder for audio inputs. Notably, this multimodal large language model is bilingual, proficient in understanding both English and Malay simultaneously. We proudly unveil two versions of this model: TinyLlama with 1.1B parameters, and Mistral with 7B parameters. With its ability to navigate diverse modalities and languages, our model represents a significant advancement for the Malaysian context and beyond. All models released at https://huggingface.co/collections/mesolitica/multimodal-malaysian-llm-65c6f893e03f78fa9e5c8859
QZhou-Embedding Technical Report
We present QZhou-Embedding, a general-purpose contextual text embedding model with exceptional text representation capabilities. Built upon the Qwen2.5-7B-Instruct foundation model, we designed a unified multi-task framework comprising specialized data transformation and training strategies. The data transformation scheme enables the incorporation of more diverse textual training datasets, while the task-specific training strategies enhance model learning efficiency. We developed a data synthesis pipeline leveraging LLM API, incorporating techniques such as paraphrasing, augmentation, and hard negative example generation to improve the semantic richness and sample difficulty of the training set. Additionally, we employ a two-stage training strategy, comprising initial retrieval-focused pretraining followed by full-task fine-tuning, enabling the embedding model to extend its capabilities based on robust retrieval performance. Our model achieves state-of-the-art results on the MTEB and CMTEB benchmarks, ranking first on both leaderboards (August 27 2025), and simultaneously achieves state-of-the-art performance on tasks including reranking, clustering, etc. Our findings demonstrate that higher-quality, more diverse data is crucial for advancing retrieval model performance, and that leveraging LLMs generative capabilities can further optimize data quality for embedding model breakthroughs. Our model weights are released on HuggingFace under Apache 2.0 license. For reproducibility, we provide evaluation code and instructions on GitHub.
15M Multimodal Facial Image-Text Dataset
Currently, image-text-driven multi-modal deep learning models have demonstrated their outstanding potential in many fields. In practice, tasks centered around facial images have broad application prospects. This paper presents FaceCaption-15M, a large-scale, diverse, and high-quality dataset of facial images accompanied by their natural language descriptions (facial image-to-text). This dataset aims to facilitate a study on face-centered tasks. FaceCaption-15M comprises over 15 million pairs of facial images and their corresponding natural language descriptions of facial features, making it the largest facial image-caption dataset to date. We conducted a comprehensive analysis of image quality, text naturalness, text complexity, and text-image relevance to demonstrate the superiority of FaceCaption-15M. To validate the effectiveness of FaceCaption-15M, we first trained a facial language-image pre-training model (FLIP, similar to CLIP) to align facial image with its corresponding captions in feature space. Subsequently, using both image and text encoders and fine-tuning only the linear layer, our FLIP-based models achieved state-of-the-art results on two challenging face-centered tasks. The purpose is to promote research in the field of face-related tasks through the availability of the proposed FaceCaption-15M dataset. All data, codes, and models are publicly available. https://huggingface.co/datasets/OpenFace-CQUPT/FaceCaption-15M
A Comprehensive Survey of Mixture-of-Experts: Algorithms, Theory, and Applications
Artificial intelligence (AI) has achieved astonishing successes in many domains, especially with the recent breakthroughs in the development of foundational large models. These large models, leveraging their extensive training data, provide versatile solutions for a wide range of downstream tasks. However, as modern datasets become increasingly diverse and complex, the development of large AI models faces two major challenges: (1) the enormous consumption of computational resources and deployment difficulties, and (2) the difficulty in fitting heterogeneous and complex data, which limits the usability of the models. Mixture of Experts (MoE) models has recently attracted much attention in addressing these challenges, by dynamically selecting and activating the most relevant sub-models to process input data. It has been shown that MoEs can significantly improve model performance and efficiency with fewer resources, particularly excelling in handling large-scale, multimodal data. Given the tremendous potential MoE has demonstrated across various domains, it is urgent to provide a comprehensive summary of recent advancements of MoEs in many important fields. Existing surveys on MoE have their limitations, e.g., being outdated or lacking discussion on certain key areas, and we aim to address these gaps. In this paper, we first introduce the basic design of MoE, including gating functions, expert networks, routing mechanisms, training strategies, and system design. We then explore the algorithm design of MoE in important machine learning paradigms such as continual learning, meta-learning, multi-task learning, and reinforcement learning. Additionally, we summarize theoretical studies aimed at understanding MoE and review its applications in computer vision and natural language processing. Finally, we discuss promising future research directions.
SketchMetaFace: A Learning-based Sketching Interface for High-fidelity 3D Character Face Modeling
Modeling 3D avatars benefits various application scenarios such as AR/VR, gaming, and filming. Character faces contribute significant diversity and vividity as a vital component of avatars. However, building 3D character face models usually requires a heavy workload with commercial tools, even for experienced artists. Various existing sketch-based tools fail to support amateurs in modeling diverse facial shapes and rich geometric details. In this paper, we present SketchMetaFace - a sketching system targeting amateur users to model high-fidelity 3D faces in minutes. We carefully design both the user interface and the underlying algorithm. First, curvature-aware strokes are adopted to better support the controllability of carving facial details. Second, considering the key problem of mapping a 2D sketch map to a 3D model, we develop a novel learning-based method termed "Implicit and Depth Guided Mesh Modeling" (IDGMM). It fuses the advantages of mesh, implicit, and depth representations to achieve high-quality results with high efficiency. In addition, to further support usability, we present a coarse-to-fine 2D sketching interface design and a data-driven stroke suggestion tool. User studies demonstrate the superiority of our system over existing modeling tools in terms of the ease to use and visual quality of results. Experimental analyses also show that IDGMM reaches a better trade-off between accuracy and efficiency. SketchMetaFace are available at https://zhongjinluo.github.io/SketchMetaFace/.
OpenTuringBench: An Open-Model-based Benchmark and Framework for Machine-Generated Text Detection and Attribution
Open Large Language Models (OLLMs) are increasingly leveraged in generative AI applications, posing new challenges for detecting their outputs. We propose OpenTuringBench, a new benchmark based on OLLMs, designed to train and evaluate machine-generated text detectors on the Turing Test and Authorship Attribution problems. OpenTuringBench focuses on a representative set of OLLMs, and features a number of challenging evaluation tasks, including human/machine-manipulated texts, out-of-domain texts, and texts from previously unseen models. We also provide OTBDetector, a contrastive learning framework to detect and attribute OLLM-based machine-generated texts. Results highlight the relevance and varying degrees of difficulty of the OpenTuringBench tasks, with our detector achieving remarkable capabilities across the various tasks and outperforming most existing detectors. Resources are available on the OpenTuringBench Hugging Face repository at https://huggingface.co/datasets/MLNTeam-Unical/OpenTuringBench
LongCat-Flash Technical Report
We introduce LongCat-Flash, a 560-billion-parameter Mixture-of-Experts (MoE) language model designed for both computational efficiency and advanced agentic capabilities. Stemming from the need for scalable efficiency, LongCat-Flash adopts two novel designs: (a) Zero-computation Experts, which enables dynamic computational budget allocation and activates 18.6B-31.3B (27B on average) per token depending on contextual demands, optimizing resource usage. (b) Shortcut-connected MoE, which enlarges the computation-communication overlap window, demonstrating notable gains in inference efficiency and throughput compared to models of a comparable scale. We develop a comprehensive scaling framework for large models that combines hyperparameter transfer, model-growth initialization, a multi-pronged stability suite, and deterministic computation to achieve stable and reproducible training. Notably, leveraging the synergy among scalable architectural design and infrastructure efforts, we complete model training on more than 20 trillion tokens within 30 days, while achieving over 100 tokens per second (TPS) for inference at a cost of \$0.70 per million output tokens. To cultivate LongCat-Flash towards agentic intelligence, we conduct a large-scale pre-training on optimized mixtures, followed by targeted mid- and post-training on reasoning, code, and instructions, with further augmentation from synthetic data and tool use tasks. Comprehensive evaluations demonstrate that, as a non-thinking foundation model, LongCat-Flash delivers highly competitive performance among other leading models, with exceptional strengths in agentic tasks. The model checkpoint of LongCat-Flash is open-sourced to foster community research. LongCat Chat: https://longcat.ai Hugging Face: https://huggingface.co/meituan-longcat GitHub: https://github.com/meituan-longcat
Multimodal Contrastive Learning with LIMoE: the Language-Image Mixture of Experts
Large sparsely-activated models have obtained excellent performance in multiple domains. However, such models are typically trained on a single modality at a time. We present the Language-Image MoE, LIMoE, a sparse mixture of experts model capable of multimodal learning. LIMoE accepts both images and text simultaneously, while being trained using a contrastive loss. MoEs are a natural fit for a multimodal backbone, since expert layers can learn an appropriate partitioning of modalities. However, new challenges arise; in particular, training stability and balanced expert utilization, for which we propose an entropy-based regularization scheme. Across multiple scales, we demonstrate remarkable performance improvement over dense models of equivalent computational cost. LIMoE-L/16 trained comparably to CLIP-L/14 achieves 78.6% zero-shot ImageNet accuracy (vs. 76.2%), and when further scaled to H/14 (with additional data) it achieves 84.1%, comparable to state-of-the-art methods which use larger custom per-modality backbones and pre-training schemes. We analyse the quantitative and qualitative behavior of LIMoE, and demonstrate phenomena such as differing treatment of the modalities and the organic emergence of modality-specific experts.
DPE: Disentanglement of Pose and Expression for General Video Portrait Editing
One-shot video-driven talking face generation aims at producing a synthetic talking video by transferring the facial motion from a video to an arbitrary portrait image. Head pose and facial expression are always entangled in facial motion and transferred simultaneously. However, the entanglement sets up a barrier for these methods to be used in video portrait editing directly, where it may require to modify the expression only while maintaining the pose unchanged. One challenge of decoupling pose and expression is the lack of paired data, such as the same pose but different expressions. Only a few methods attempt to tackle this challenge with the feat of 3D Morphable Models (3DMMs) for explicit disentanglement. But 3DMMs are not accurate enough to capture facial details due to the limited number of Blenshapes, which has side effects on motion transfer. In this paper, we introduce a novel self-supervised disentanglement framework to decouple pose and expression without 3DMMs and paired data, which consists of a motion editing module, a pose generator, and an expression generator. The editing module projects faces into a latent space where pose motion and expression motion can be disentangled, and the pose or expression transfer can be performed in the latent space conveniently via addition. The two generators render the modified latent codes to images, respectively. Moreover, to guarantee the disentanglement, we propose a bidirectional cyclic training strategy with well-designed constraints. Evaluations demonstrate our method can control pose or expression independently and be used for general video editing.
UniF^2ace: Fine-grained Face Understanding and Generation with Unified Multimodal Models
Unified multimodal models (UMMs) have emerged as a powerful paradigm in foundational computer vision research, demonstrating significant potential in both image understanding and generation. However, existing research in the face domain primarily focuses on coarse facial attribute understanding, with limited capacity to handle fine-grained facial attributes and without addressing generation capabilities. To overcome these limitations, we propose UniF^2ace, the first UMM tailored specifically for fine-grained face understanding and generation. In general, we train UniF^2ace on a self-constructed, specialized dataset utilizing two mutually beneficial diffusion techniques and a two-level mixture-of-experts architecture. Specifically, we first build a large-scale facial dataset, UniF^2ace-130K, which contains 130K image-text pairs with one million question-answering pairs that span a wide range of facial attributes. Second, we establish a theoretical connection between discrete diffusion score matching and masked generative models, optimizing both evidence lower bounds simultaneously, which significantly improves the model's ability to synthesize facial details. Finally, we introduce both token-level and sequence-level mixture-of-experts, enabling efficient fine-grained representation learning for both understanding and generation tasks. Extensive experiments on UniF^2ace-130K demonstrate that UniF^2ace outperforms existing UMMs and generative models, achieving superior performance across both understanding and generation tasks.
From Sparse to Soft Mixtures of Experts
Sparse mixture of expert architectures (MoEs) scale model capacity without large increases in training or inference costs. Despite their success, MoEs suffer from a number of issues: training instability, token dropping, inability to scale the number of experts, or ineffective finetuning. In this work, we proposeSoft MoE, a fully-differentiable sparse Transformer that addresses these challenges, while maintaining the benefits of MoEs. Soft MoE performs an implicit soft assignment by passing different weighted combinations of all input tokens to each expert. As in other MoE works, experts in Soft MoE only process a subset of the (combined) tokens, enabling larger model capacity at lower inference cost. In the context of visual recognition, Soft MoE greatly outperforms standard Transformers (ViTs) and popular MoE variants (Tokens Choice and Experts Choice). For example, Soft MoE-Base/16 requires 10.5x lower inference cost (5.7x lower wall-clock time) than ViT-Huge/14 while matching its performance after similar training. Soft MoE also scales well: Soft MoE Huge/14 with 128 experts in 16 MoE layers has over 40x more parameters than ViT Huge/14, while inference time cost grows by only 2%, and it performs substantially better.
CBT-LLM: A Chinese Large Language Model for Cognitive Behavioral Therapy-based Mental Health Question Answering
The recent advancements in artificial intelligence highlight the potential of language models in psychological health support. While models trained on data from mental health service platform have achieved preliminary success, challenges persist in areas such as data scarcity, quality, and ensuring a solid foundation in psychological techniques. To address these challenges, this study introduces a novel approach to enhance the precision and efficacy of psychological support through large language models. Specifically, we design a specific prompt derived from principles of Cognitive Behavioral Therapy (CBT) and have generated the CBT QA dataset, specifically for Chinese psychological health Q&A based on CBT structured intervention strategies. Unlike previous methods, our dataset emphasizes professional and structured response. Utilizing this dataset, we fine-tuned the large language model, giving birth to CBT-LLM, the large-scale language model specifically designed for Cognitive Behavioral Therapy techniques. Empirical evaluations demonstrate that CBT-LLM excels in generating structured, professional, and highly relevant responses in psychological health support tasks, showcasing its practicality and quality. The model is available on Hugging Face: https://huggingface.co/Hongbin37/CBT-LLM.
Navigating Dataset Documentations in AI: A Large-Scale Analysis of Dataset Cards on Hugging Face
Advances in machine learning are closely tied to the creation of datasets. While data documentation is widely recognized as essential to the reliability, reproducibility, and transparency of ML, we lack a systematic empirical understanding of current dataset documentation practices. To shed light on this question, here we take Hugging Face -- one of the largest platforms for sharing and collaborating on ML models and datasets -- as a prominent case study. By analyzing all 7,433 dataset documentation on Hugging Face, our investigation provides an overview of the Hugging Face dataset ecosystem and insights into dataset documentation practices, yielding 5 main findings: (1) The dataset card completion rate shows marked heterogeneity correlated with dataset popularity. (2) A granular examination of each section within the dataset card reveals that the practitioners seem to prioritize Dataset Description and Dataset Structure sections, while the Considerations for Using the Data section receives the lowest proportion of content. (3) By analyzing the subsections within each section and utilizing topic modeling to identify key topics, we uncover what is discussed in each section, and underscore significant themes encompassing both technical and social impacts, as well as limitations within the Considerations for Using the Data section. (4) Our findings also highlight the need for improved accessibility and reproducibility of datasets in the Usage sections. (5) In addition, our human annotation evaluation emphasizes the pivotal role of comprehensive dataset content in shaping individuals' perceptions of a dataset card's overall quality. Overall, our study offers a unique perspective on analyzing dataset documentation through large-scale data science analysis and underlines the need for more thorough dataset documentation in machine learning research.
SMILE: Scaling Mixture-of-Experts with Efficient Bi-level Routing
The mixture of Expert (MoE) parallelism is a recent advancement that scales up the model size with constant computational cost. MoE selects different sets of parameters (i.e., experts) for each incoming token, resulting in a sparsely-activated model. Despite several successful applications of MoE, its training efficiency degrades significantly as the number of experts increases. The routing stage in MoE relies on the efficiency of the All2All communication collective, which suffers from network congestion and has poor scalability. To mitigate these issues, we introduce SMILE, which exploits heterogeneous network bandwidth and splits a single-step routing into bi-level routing. Our experimental results show that the proposed method obtains a 2.5x speedup over Switch Transformer in terms of pretraining throughput on the Colossal Clean Crawled Corpus without losing any convergence speed.
InfiMM-HD: A Leap Forward in High-Resolution Multimodal Understanding
Multimodal Large Language Models (MLLMs) have experienced significant advancements recently. Nevertheless, challenges persist in the accurate recognition and comprehension of intricate details within high-resolution images. Despite being indispensable for the development of robust MLLMs, this area remains underinvestigated. To tackle this challenge, our work introduces InfiMM-HD, a novel architecture specifically designed for processing images of different resolutions with low computational overhead. This innovation facilitates the enlargement of MLLMs to higher-resolution capabilities. InfiMM-HD incorporates a cross-attention module and visual windows to reduce computation costs. By integrating this architectural design with a four-stage training pipeline, our model attains improved visual perception efficiently and cost-effectively. Empirical study underscores the robustness and effectiveness of InfiMM-HD, opening new avenues for exploration in related areas. Codes and models can be found at https://huggingface.co/Infi-MM/infimm-hd
Text-Guided Generation and Editing of Compositional 3D Avatars
Our goal is to create a realistic 3D facial avatar with hair and accessories using only a text description. While this challenge has attracted significant recent interest, existing methods either lack realism, produce unrealistic shapes, or do not support editing, such as modifications to the hairstyle. We argue that existing methods are limited because they employ a monolithic modeling approach, using a single representation for the head, face, hair, and accessories. Our observation is that the hair and face, for example, have very different structural qualities that benefit from different representations. Building on this insight, we generate avatars with a compositional model, in which the head, face, and upper body are represented with traditional 3D meshes, and the hair, clothing, and accessories with neural radiance fields (NeRF). The model-based mesh representation provides a strong geometric prior for the face region, improving realism while enabling editing of the person's appearance. By using NeRFs to represent the remaining components, our method is able to model and synthesize parts with complex geometry and appearance, such as curly hair and fluffy scarves. Our novel system synthesizes these high-quality compositional avatars from text descriptions. The experimental results demonstrate that our method, Text-guided generation and Editing of Compositional Avatars (TECA), produces avatars that are more realistic than those of recent methods while being editable because of their compositional nature. For example, our TECA enables the seamless transfer of compositional features like hairstyles, scarves, and other accessories between avatars. This capability supports applications such as virtual try-on.
Experimentation in Content Moderation using RWKV
This paper investigates the RWKV model's efficacy in content moderation through targeted experimentation. We introduce a novel dataset specifically designed for distillation into smaller models, enhancing content moderation practices. This comprehensive dataset encompasses images, videos, sounds, and text data that present societal challenges. Leveraging advanced Large Language Models (LLMs), we generated an extensive set of responses -- 558,958 for text and 83,625 for images -- to train and refine content moderation systems. Our core experimentation involved fine-tuning the RWKV model, capitalizing on its CPU-efficient architecture to address large-scale content moderation tasks. By highlighting the dataset's potential for knowledge distillation, this study not only demonstrates RWKV's capability in improving the accuracy and efficiency of content moderation systems but also paves the way for developing more compact, resource-efficient models in this domain. Datasets and models can be found in HuggingFace: https://huggingface.co/modrwkv
HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in HuggingFace
Solving complicated AI tasks with different domains and modalities is a key step toward artificial general intelligence (AGI). While there are abundant AI models available for different domains and modalities, they cannot handle complicated AI tasks. Considering large language models (LLMs) have exhibited exceptional ability in language understanding, generation, interaction, and reasoning, we advocate that LLMs could act as a controller to manage existing AI models to solve complicated AI tasks and language could be a generic interface to empower this. Based on this philosophy, we present HuggingGPT, a system that leverages LLMs (e.g., ChatGPT) to connect various AI models in machine learning communities (e.g., HuggingFace) to solve AI tasks. Specifically, we use ChatGPT to conduct task planning when receiving a user request, select models according to their function descriptions available in HuggingFace, execute each subtask with the selected AI model, and summarize the response according to the execution results. By leveraging the strong language capability of ChatGPT and abundant AI models in HuggingFace, HuggingGPT is able to cover numerous sophisticated AI tasks in different modalities and domains and achieve impressive results in language, vision, speech, and other challenging tasks, which paves a new way towards AGI.
The Lucie-7B LLM and the Lucie Training Dataset: Open resources for multilingual language generation
We present both the Lucie Training Dataset and the Lucie-7B foundation model. The Lucie Training Dataset is a multilingual collection of textual corpora centered around French and designed to offset anglo-centric biases found in many datasets for large language model pretraining. Its French data is pulled not only from traditional web sources, but also from French cultural heritage documents, filling an important gap in modern datasets. Beyond French, which makes up the largest share of the data, we added documents to support several other European languages, including English, Spanish, German, and Italian. Apart from its value as a resource for French language and culture, an important feature of this dataset is that it prioritizes data rights by minimizing copyrighted material. In addition, building on the philosophy of past open projects, it is redistributed in the form used for training and its processing is described on Hugging Face and GitHub. The Lucie-7B foundation model is trained on equal amounts of data in French and English -- roughly 33% each -- in an effort to better represent cultural aspects of French-speaking communities. We also describe two instruction fine-tuned models, Lucie-7B-Instruct-v1.1 and Lucie-7B-Instruct-human-data, which we release as demonstrations of Lucie-7B in use. These models achieve promising results compared to state-of-the-art models, demonstrating that an open approach prioritizing data rights can still deliver strong performance. We see these models as an initial step toward developing more performant, aligned models in the near future. Model weights for Lucie-7B and the Lucie instruct models, along with intermediate checkpoints for the former, are published on Hugging Face, while model training and data preparation code is available on GitHub. This makes Lucie-7B one of the first OSI compliant language models according to the new OSI definition.
VN-MTEB: Vietnamese Massive Text Embedding Benchmark
Vietnam ranks among the top countries in terms of both internet traffic and online toxicity. As a result, implementing embedding models for recommendation and content control duties in applications is crucial. However, a lack of large-scale test datasets, both in volume and task diversity, makes it tricky for scientists to effectively evaluate AI models before deploying them in real-world, large-scale projects. To solve this important problem, we introduce a Vietnamese benchmark, VN-MTEB for embedding models, which we created by translating a large number of English samples from the Massive Text Embedding Benchmark using our new automated framework. We leverage the strengths of large language models (LLMs) and cutting-edge embedding models to conduct translation and filtering processes to retain high-quality samples, guaranteeing a natural flow of language and semantic fidelity while preserving named entity recognition (NER) and code snippets. Our comprehensive benchmark consists of 41 datasets from six tasks specifically designed for Vietnamese text embeddings. In our analysis, we find that bigger and more complex models using Rotary Positional Embedding outperform those using Absolute Positional Embedding in embedding tasks. Datasets are available at HuggingFace: https://huggingface.co/collections/GreenNode/vn-mteb-68871433f0f7573b8e1a6686
Social-MAE: A Transformer-Based Multimodal Autoencoder for Face and Voice
Human social behaviors are inherently multimodal necessitating the development of powerful audiovisual models for their perception. In this paper, we present Social-MAE, our pre-trained audiovisual Masked Autoencoder based on an extended version of Contrastive Audio-Visual Masked Auto-Encoder (CAV-MAE), which is pre-trained on audiovisual social data. Specifically, we modify CAV-MAE to receive a larger number of frames as input and pre-train it on a large dataset of human social interaction (VoxCeleb2) in a self-supervised manner. We demonstrate the effectiveness of this model by finetuning and evaluating the model on different social and affective downstream tasks, namely, emotion recognition, laughter detection and apparent personality estimation. The model achieves state-of-the-art results on multimodal emotion recognition and laughter recognition and competitive results for apparent personality estimation, demonstrating the effectiveness of in-domain self-supervised pre-training. Code and model weight are available here https://github.com/HuBohy/SocialMAE.
Emotional Speech-Driven Animation with Content-Emotion Disentanglement
To be widely adopted, 3D facial avatars must be animated easily, realistically, and directly from speech signals. While the best recent methods generate 3D animations that are synchronized with the input audio, they largely ignore the impact of emotions on facial expressions. Realistic facial animation requires lip-sync together with the natural expression of emotion. To that end, we propose EMOTE (Expressive Model Optimized for Talking with Emotion), which generates 3D talking-head avatars that maintain lip-sync from speech while enabling explicit control over the expression of emotion. To achieve this, we supervise EMOTE with decoupled losses for speech (i.e., lip-sync) and emotion. These losses are based on two key observations: (1) deformations of the face due to speech are spatially localized around the mouth and have high temporal frequency, whereas (2) facial expressions may deform the whole face and occur over longer intervals. Thus, we train EMOTE with a per-frame lip-reading loss to preserve the speech-dependent content, while supervising emotion at the sequence level. Furthermore, we employ a content-emotion exchange mechanism in order to supervise different emotions on the same audio, while maintaining the lip motion synchronized with the speech. To employ deep perceptual losses without getting undesirable artifacts, we devise a motion prior in the form of a temporal VAE. Due to the absence of high-quality aligned emotional 3D face datasets with speech, EMOTE is trained with 3D pseudo-ground-truth extracted from an emotional video dataset (i.e., MEAD). Extensive qualitative and perceptual evaluations demonstrate that EMOTE produces speech-driven facial animations with better lip-sync than state-of-the-art methods trained on the same data, while offering additional, high-quality emotional control.
Uni-MoE: Scaling Unified Multimodal LLMs with Mixture of Experts
Recent advancements in Multimodal Large Language Models (MLLMs) underscore the significance of scalable models and data to boost performance, yet this often incurs substantial computational costs. Although the Mixture of Experts (MoE) architecture has been employed to efficiently scale large language and image-text models, these efforts typically involve fewer experts and limited modalities. To address this, our work presents the pioneering attempt to develop a unified MLLM with the MoE architecture, named Uni-MoE that can handle a wide array of modalities. Specifically, it features modality-specific encoders with connectors for a unified multimodal representation. We also implement a sparse MoE architecture within the LLMs to enable efficient training and inference through modality-level data parallelism and expert-level model parallelism. To enhance the multi-expert collaboration and generalization, we present a progressive training strategy: 1) Cross-modality alignment using various connectors with different cross-modality data, 2) Training modality-specific experts with cross-modality instruction data to activate experts' preferences, and 3) Tuning the Uni-MoE framework utilizing Low-Rank Adaptation (LoRA) on mixed multimodal instruction data. We evaluate the instruction-tuned Uni-MoE on a comprehensive set of multimodal datasets. The extensive experimental results demonstrate Uni-MoE's principal advantage of significantly reducing performance bias in handling mixed multimodal datasets, alongside improved multi-expert collaboration and generalization. Our findings highlight the substantial potential of MoE frameworks in advancing MLLMs and the code is available at https://github.com/HITsz-TMG/UMOE-Scaling-Unified-Multimodal-LLMs.
Emotion-Controllable Generalized Talking Face Generation
Despite the significant progress in recent years, very few of the AI-based talking face generation methods attempt to render natural emotions. Moreover, the scope of the methods is majorly limited to the characteristics of the training dataset, hence they fail to generalize to arbitrary unseen faces. In this paper, we propose a one-shot facial geometry-aware emotional talking face generation method that can generalize to arbitrary faces. We propose a graph convolutional neural network that uses speech content feature, along with an independent emotion input to generate emotion and speech-induced motion on facial geometry-aware landmark representation. This representation is further used in our optical flow-guided texture generation network for producing the texture. We propose a two-branch texture generation network, with motion and texture branches designed to consider the motion and texture content independently. Compared to the previous emotion talking face methods, our method can adapt to arbitrary faces captured in-the-wild by fine-tuning with only a single image of the target identity in neutral emotion.
GeneAvatar: Generic Expression-Aware Volumetric Head Avatar Editing from a Single Image
Recently, we have witnessed the explosive growth of various volumetric representations in modeling animatable head avatars. However, due to the diversity of frameworks, there is no practical method to support high-level applications like 3D head avatar editing across different representations. In this paper, we propose a generic avatar editing approach that can be universally applied to various 3DMM driving volumetric head avatars. To achieve this goal, we design a novel expression-aware modification generative model, which enables lift 2D editing from a single image to a consistent 3D modification field. To ensure the effectiveness of the generative modification process, we develop several techniques, including an expression-dependent modification distillation scheme to draw knowledge from the large-scale head avatar model and 2D facial texture editing tools, implicit latent space guidance to enhance model convergence, and a segmentation-based loss reweight strategy for fine-grained texture inversion. Extensive experiments demonstrate that our method delivers high-quality and consistent results across multiple expression and viewpoints. Project page: https://zju3dv.github.io/geneavatar/
Face-MakeUp: Multimodal Facial Prompts for Text-to-Image Generation
Facial images have extensive practical applications. Although the current large-scale text-image diffusion models exhibit strong generation capabilities, it is challenging to generate the desired facial images using only text prompt. Image prompts are a logical choice. However, current methods of this type generally focus on general domain. In this paper, we aim to optimize image makeup techniques to generate the desired facial images. Specifically, (1) we built a dataset of 4 million high-quality face image-text pairs (FaceCaptionHQ-4M) based on LAION-Face to train our Face-MakeUp model; (2) to maintain consistency with the reference facial image, we extract/learn multi-scale content features and pose features for the facial image, integrating these into the diffusion model to enhance the preservation of facial identity features for diffusion models. Validation on two face-related test datasets demonstrates that our Face-MakeUp can achieve the best comprehensive performance.All codes are available at:https://github.com/ddw2AIGROUP2CQUPT/Face-MakeUp
SMIRK: 3D Facial Expressions through Analysis-by-Neural-Synthesis
While existing methods for 3D face reconstruction from in-the-wild images excel at recovering the overall face shape, they commonly miss subtle, extreme, asymmetric, or rarely observed expressions. We improve upon these methods with SMIRK (Spatial Modeling for Image-based Reconstruction of Kinesics), which faithfully reconstructs expressive 3D faces from images. We identify two key limitations in existing methods: shortcomings in their self-supervised training formulation, and a lack of expression diversity in the training images. For training, most methods employ differentiable rendering to compare a predicted face mesh with the input image, along with a plethora of additional loss functions. This differentiable rendering loss not only has to provide supervision to optimize for 3D face geometry, camera, albedo, and lighting, which is an ill-posed optimization problem, but the domain gap between rendering and input image further hinders the learning process. Instead, SMIRK replaces the differentiable rendering with a neural rendering module that, given the rendered predicted mesh geometry, and sparsely sampled pixels of the input image, generates a face image. As the neural rendering gets color information from sampled image pixels, supervising with neural rendering-based reconstruction loss can focus solely on the geometry. Further, it enables us to generate images of the input identity with varying expressions while training. These are then utilized as input to the reconstruction model and used as supervision with ground truth geometry. This effectively augments the training data and enhances the generalization for diverse expressions. Our qualitative, quantitative and particularly our perceptual evaluations demonstrate that SMIRK achieves the new state-of-the art performance on accurate expression reconstruction. Project webpage: https://georgeretsi.github.io/smirk/.
A Large-scale Dataset for Robust Complex Anime Scene Text Detection
Current text detection datasets primarily target natural or document scenes, where text typically appear in regular font and shapes, monotonous colors, and orderly layouts. The text usually arranged along straight or curved lines. However, these characteristics differ significantly from anime scenes, where text is often diverse in style, irregularly arranged, and easily confused with complex visual elements such as symbols and decorative patterns. Text in anime scene also includes a large number of handwritten and stylized fonts. Motivated by this gap, we introduce AnimeText, a large-scale dataset containing 735K images and 4.2M annotated text blocks. It features hierarchical annotations and hard negative samples tailored for anime scenarios. %Cross-dataset evaluations using state-of-the-art methods demonstrate that models trained on AnimeText achieve superior performance in anime text detection tasks compared to existing datasets. To evaluate the robustness of AnimeText in complex anime scenes, we conducted cross-dataset benchmarking using state-of-the-art text detection methods. Experimental results demonstrate that models trained on AnimeText outperform those trained on existing datasets in anime scene text detection tasks. AnimeText on HuggingFace: https://huggingface.co/datasets/deepghs/AnimeText
JoyVASA: Portrait and Animal Image Animation with Diffusion-Based Audio-Driven Facial Dynamics and Head Motion Generation
Audio-driven portrait animation has made significant advances with diffusion-based models, improving video quality and lipsync accuracy. However, the increasing complexity of these models has led to inefficiencies in training and inference, as well as constraints on video length and inter-frame continuity. In this paper, we propose JoyVASA, a diffusion-based method for generating facial dynamics and head motion in audio-driven facial animation. Specifically, in the first stage, we introduce a decoupled facial representation framework that separates dynamic facial expressions from static 3D facial representations. This decoupling allows the system to generate longer videos by combining any static 3D facial representation with dynamic motion sequences. Then, in the second stage, a diffusion transformer is trained to generate motion sequences directly from audio cues, independent of character identity. Finally, a generator trained in the first stage uses the 3D facial representation and the generated motion sequences as inputs to render high-quality animations. With the decoupled facial representation and the identity-independent motion generation process, JoyVASA extends beyond human portraits to animate animal faces seamlessly. The model is trained on a hybrid dataset of private Chinese and public English data, enabling multilingual support. Experimental results validate the effectiveness of our approach. Future work will focus on improving real-time performance and refining expression control, further expanding the applications in portrait animation. The code is available at: https://github.com/jdh-algo/JoyVASA.
EMO: Emote Portrait Alive - Generating Expressive Portrait Videos with Audio2Video Diffusion Model under Weak Conditions
In this work, we tackle the challenge of enhancing the realism and expressiveness in talking head video generation by focusing on the dynamic and nuanced relationship between audio cues and facial movements. We identify the limitations of traditional techniques that often fail to capture the full spectrum of human expressions and the uniqueness of individual facial styles. To address these issues, we propose EMO, a novel framework that utilizes a direct audio-to-video synthesis approach, bypassing the need for intermediate 3D models or facial landmarks. Our method ensures seamless frame transitions and consistent identity preservation throughout the video, resulting in highly expressive and lifelike animations. Experimental results demonsrate that EMO is able to produce not only convincing speaking videos but also singing videos in various styles, significantly outperforming existing state-of-the-art methodologies in terms of expressiveness and realism.
Single-Shot Implicit Morphable Faces with Consistent Texture Parameterization
There is a growing demand for the accessible creation of high-quality 3D avatars that are animatable and customizable. Although 3D morphable models provide intuitive control for editing and animation, and robustness for single-view face reconstruction, they cannot easily capture geometric and appearance details. Methods based on neural implicit representations, such as signed distance functions (SDF) or neural radiance fields, approach photo-realism, but are difficult to animate and do not generalize well to unseen data. To tackle this problem, we propose a novel method for constructing implicit 3D morphable face models that are both generalizable and intuitive for editing. Trained from a collection of high-quality 3D scans, our face model is parameterized by geometry, expression, and texture latent codes with a learned SDF and explicit UV texture parameterization. Once trained, we can reconstruct an avatar from a single in-the-wild image by leveraging the learned prior to project the image into the latent space of our model. Our implicit morphable face models can be used to render an avatar from novel views, animate facial expressions by modifying expression codes, and edit textures by directly painting on the learned UV-texture maps. We demonstrate quantitatively and qualitatively that our method improves upon photo-realism, geometry, and expression accuracy compared to state-of-the-art methods.
Expressive Gaussian Human Avatars from Monocular RGB Video
Nuanced expressiveness, particularly through fine-grained hand and facial expressions, is pivotal for enhancing the realism and vitality of digital human representations. In this work, we focus on investigating the expressiveness of human avatars when learned from monocular RGB video; a setting that introduces new challenges in capturing and animating fine-grained details. To this end, we introduce EVA, a drivable human model that meticulously sculpts fine details based on 3D Gaussians and SMPL-X, an expressive parametric human model. Focused on enhancing expressiveness, our work makes three key contributions. First, we highlight the critical importance of aligning the SMPL-X model with RGB frames for effective avatar learning. Recognizing the limitations of current SMPL-X prediction methods for in-the-wild videos, we introduce a plug-and-play module that significantly ameliorates misalignment issues. Second, we propose a context-aware adaptive density control strategy, which is adaptively adjusting the gradient thresholds to accommodate the varied granularity across body parts. Last but not least, we develop a feedback mechanism that predicts per-pixel confidence to better guide the learning of 3D Gaussians. Extensive experiments on two benchmarks demonstrate the superiority of our framework both quantitatively and qualitatively, especially on the fine-grained hand and facial details. See the project website at https://evahuman.github.io
ID-Consistent, Precise Expression Generation with Blendshape-Guided Diffusion
Human-centric generative models designed for AI-driven storytelling must bring together two core capabilities: identity consistency and precise control over human performance. While recent diffusion-based approaches have made significant progress in maintaining facial identity, achieving fine-grained expression control without compromising identity remains challenging. In this work, we present a diffusion-based framework that faithfully reimagines any subject under any particular facial expression. Building on an ID-consistent face foundation model, we adopt a compositional design featuring an expression cross-attention module guided by FLAME blendshape parameters for explicit control. Trained on a diverse mixture of image and video data rich in expressive variation, our adapter generalizes beyond basic emotions to subtle micro-expressions and expressive transitions, overlooked by prior works. In addition, a pluggable Reference Adapter enables expression editing in real images by transferring the appearance from a reference frame during synthesis. Extensive quantitative and qualitative evaluations show that our model outperforms existing methods in tailored and identity-consistent expression generation. Code and models can be found at https://github.com/foivospar/Arc2Face.
UMoE: Unifying Attention and FFN with Shared Experts
Sparse Mixture of Experts (MoE) architectures have emerged as a promising approach for scaling Transformer models. While initial works primarily incorporated MoE into feed-forward network (FFN) layers, recent studies have explored extending the MoE paradigm to attention layers to enhance model performance. However, existing attention-based MoE layers require specialized implementations and demonstrate suboptimal performance compared to their FFN-based counterparts. In this paper, we aim to unify the MoE designs in attention and FFN layers by introducing a novel reformulation of the attention mechanism, revealing an underlying FFN-like structure within attention modules. Our proposed architecture, UMoE, achieves superior performance through attention-based MoE layers while enabling efficient parameter sharing between FFN and attention components.
Unsupervised Manga Character Re-identification via Face-body and Spatial-temporal Associated Clustering
In the past few years, there has been a dramatic growth in e-manga (electronic Japanese-style comics). Faced with the booming demand for manga research and the large amount of unlabeled manga data, we raised a new task, called unsupervised manga character re-identification. However, the artistic expression and stylistic limitations of manga pose many challenges to the re-identification problem. Inspired by the idea that some content-related features may help clustering, we propose a Face-body and Spatial-temporal Associated Clustering method (FSAC). In the face-body combination module, a face-body graph is constructed to solve problems such as exaggeration and deformation in artistic creation by using the integrity of the image. In the spatial-temporal relationship correction module, we analyze the appearance features of characters and design a temporal-spatial-related triplet loss to fine-tune the clustering. Extensive experiments on a manga book dataset with 109 volumes validate the superiority of our method in unsupervised manga character re-identification.
An Empirical Study of Safetensors' Usage Trends and Developers' Perceptions
Developers are sharing pre-trained Machine Learning (ML) models through a variety of model sharing platforms, such as Hugging Face, in an effort to make ML development more collaborative. To share the models, they must first be serialized. While there are many methods of serialization in Python, most of them are unsafe. To tame this insecurity, Hugging Face released safetensors as a way to mitigate the threats posed by unsafe serialization formats. In this context, this paper investigates developer's shifts towards using safetensors on Hugging Face in an effort to understand security practices in the ML development community, as well as how developers react to new methods of serialization. Our results find that more developers are adopting safetensors, and many safetensor adoptions were made by automated conversions of existing models by Hugging Face's conversion tool. We also found, however, that a majority of developers ignore the conversion tool's pull requests, and that while many developers are facing issues with using safetensors, they are eager to learn about and adapt the format.
Not All Correct Answers Are Equal: Why Your Distillation Source Matters
Distillation has emerged as a practical and effective approach to enhance the reasoning capabilities of open-source language models. In this work, we conduct a large-scale empirical study on reasoning data distillation by collecting verified outputs from three state-of-the-art teacher models-AM-Thinking-v1, Qwen3-235B-A22B, and DeepSeek-R1-on a shared corpus of 1.89 million queries. We construct three parallel datasets and analyze their distributions, revealing that AM-Thinking-v1-distilled data exhibits greater token length diversity and lower perplexity. Student models trained on each dataset are evaluated on reasoning benchmarks including AIME2024, AIME2025, MATH500, and LiveCodeBench. The AM-based model consistently achieves the best performance (e.g., 84.3 on AIME2024, 72.2 on AIME2025, 98.4 on MATH500, and 65.9 on LiveCodeBench) and demonstrates adaptive output behavior-producing longer responses for harder tasks and shorter ones for simpler tasks. These findings highlight the value of high-quality, verified reasoning traces. We release the AM-Thinking-v1 and Qwen3-235B-A22B distilled datasets to support future research on open and high-performing reasoning-oriented language models. The datasets are publicly available on Hugging FaceDatasets are available on Hugging Face: \href{https://huggingface.co/datasets/a-m-team/AM-Thinking-v1-Distilled{AM-Thinking-v1-Distilled}, https://huggingface.co/datasets/a-m-team/AM-Qwen3-Distilled{AM-Qwen3-Distilled}.}.
MegActor: Harness the Power of Raw Video for Vivid Portrait Animation
Despite raw driving videos contain richer information on facial expressions than intermediate representations such as landmarks in the field of portrait animation, they are seldom the subject of research. This is due to two challenges inherent in portrait animation driven with raw videos: 1) significant identity leakage; 2) Irrelevant background and facial details such as wrinkles degrade performance. To harnesses the power of the raw videos for vivid portrait animation, we proposed a pioneering conditional diffusion model named as MegActor. First, we introduced a synthetic data generation framework for creating videos with consistent motion and expressions but inconsistent IDs to mitigate the issue of ID leakage. Second, we segmented the foreground and background of the reference image and employed CLIP to encode the background details. This encoded information is then integrated into the network via a text embedding module, thereby ensuring the stability of the background. Finally, we further style transfer the appearance of the reference image to the driving video to eliminate the influence of facial details in the driving videos. Our final model was trained solely on public datasets, achieving results comparable to commercial models. We hope this will help the open-source community.The code is available at https://github.com/megvii-research/MegFaceAnimate.
TexAvatars : Hybrid Texel-3D Representations for Stable Rigging of Photorealistic Gaussian Head Avatars
Constructing drivable and photorealistic 3D head avatars has become a central task in AR/XR, enabling immersive and expressive user experiences. With the emergence of high-fidelity and efficient representations such as 3D Gaussians, recent works have pushed toward ultra-detailed head avatars. Existing approaches typically fall into two categories: rule-based analytic rigging or neural network-based deformation fields. While effective in constrained settings, both approaches often fail to generalize to unseen expressions and poses, particularly in extreme reenactment scenarios. Other methods constrain Gaussians to the global texel space of 3DMMs to reduce rendering complexity. However, these texel-based avatars tend to underutilize the underlying mesh structure. They apply minimal analytic deformation and rely heavily on neural regressors and heuristic regularization in UV space, which weakens geometric consistency and limits extrapolation to complex, out-of-distribution deformations. To address these limitations, we introduce TexAvatars, a hybrid avatar representation that combines the explicit geometric grounding of analytic rigging with the spatial continuity of texel space. Our approach predicts local geometric attributes in UV space via CNNs, but drives 3D deformation through mesh-aware Jacobians, enabling smooth and semantically meaningful transitions across triangle boundaries. This hybrid design separates semantic modeling from geometric control, resulting in improved generalization, interpretability, and stability. Furthermore, TexAvatars captures fine-grained expression effects, including muscle-induced wrinkles, glabellar lines, and realistic mouth cavity geometry, with high fidelity. Our method achieves state-of-the-art performance under extreme pose and expression variations, demonstrating strong generalization in challenging head reenactment settings.
AfriqueLLM: How Data Mixing and Model Architecture Impact Continued Pre-training for African Languages
Large language models (LLMs) are increasingly multilingual, yet open models continue to underperform relative to proprietary systems, with the gap most pronounced for African languages. Continued pre-training (CPT) offers a practical route to language adaptation, but improvements on demanding capabilities such as mathematical reasoning often remain limited. This limitation is driven in part by the uneven domain coverage and missing task-relevant knowledge that characterize many low-resource language corpora. We present AfriqueLLM, a suite of open LLMs adapted to 20 African languages through CPT on 26B tokens. We perform a comprehensive empirical study across five base models spanning sizes and architectures, including Llama 3.1, Gemma 3, and Qwen 3, and systematically analyze how CPT data composition shapes downstream performance. In particular, we vary mixtures that include math, code, and synthetic translated data, and evaluate the resulting models on a range of multilingual benchmarks. Our results identify data composition as the primary driver of CPT gains. Adding math, code, and synthetic translated data yields consistent improvements, including on reasoning-oriented evaluations. Within a fixed architecture, larger models typically improve performance, but architectural choices dominate scale when comparing across model families. Moreover, strong multilingual performance in the base model does not reliably predict post-CPT outcomes; robust architectures coupled with task-aligned data provide a more dependable recipe. Finally, our best models improve long-context performance, including document-level translation. Models have been released on [Huggingface](https://huggingface.co/collections/McGill-NLP/afriquellm).
OpenBA: An Open-sourced 15B Bilingual Asymmetric seq2seq Model Pre-trained from Scratch
Large language models (LLMs) with billions of parameters have demonstrated outstanding performance on various natural language processing tasks. This report presents OpenBA, an open-sourced 15B bilingual asymmetric seq2seq model, to contribute an LLM variant to the Chinese-oriented open-source model community. We enhance OpenBA with effective and efficient techniques as well as adopt a three-stage training strategy to train the model from scratch. Our solution can also achieve very competitive performance with only 380B tokens, which is better than LLaMA-70B on the BELEBELE benchmark, BLOOM-176B on the MMLU benchmark, GLM-130B on the C-Eval (hard) benchmark. This report provides the main details to pre-train an analogous model, including pre-training data processing, Bilingual Flan data collection, the empirical observations that inspire our model architecture design, training objectives of different stages, and other enhancement techniques. We have refactored our code to follow the design principles of the Huggingface Transformers Library, making it more convenient for developers to use, and released checkpoints of different training stages at https://huggingface.co/openBA. More details of our project are available at https://github.com/OpenNLG/openBA.git.
FastMoE: A Fast Mixture-of-Expert Training System
Mixture-of-Expert (MoE) presents a strong potential in enlarging the size of language model to trillions of parameters. However, training trillion-scale MoE requires algorithm and system co-design for a well-tuned high performance distributed training system. Unfortunately, the only existing platform that meets the requirements strongly depends on Google's hardware (TPU) and software (Mesh Tensorflow) stack, and is not open and available to the public, especially GPU and PyTorch communities. In this paper, we present FastMoE, a distributed MoE training system based on PyTorch with common accelerators. The system provides a hierarchical interface for both flexible model design and easy adaption to different applications, such as Transformer-XL and Megatron-LM. Different from direct implementation of MoE models using PyTorch, the training speed is highly optimized in FastMoE by sophisticated high-performance acceleration skills. The system supports placing different experts on multiple GPUs across multiple nodes, enabling enlarging the number of experts linearly against the number of GPUs. The source of FastMoE is available at https://github.com/laekov/fastmoe under Apache-2 license.
ToonTalker: Cross-Domain Face Reenactment
We target cross-domain face reenactment in this paper, i.e., driving a cartoon image with the video of a real person and vice versa. Recently, many works have focused on one-shot talking face generation to drive a portrait with a real video, i.e., within-domain reenactment. Straightforwardly applying those methods to cross-domain animation will cause inaccurate expression transfer, blur effects, and even apparent artifacts due to the domain shift between cartoon and real faces. Only a few works attempt to settle cross-domain face reenactment. The most related work AnimeCeleb requires constructing a dataset with pose vector and cartoon image pairs by animating 3D characters, which makes it inapplicable anymore if no paired data is available. In this paper, we propose a novel method for cross-domain reenactment without paired data. Specifically, we propose a transformer-based framework to align the motions from different domains into a common latent space where motion transfer is conducted via latent code addition. Two domain-specific motion encoders and two learnable motion base memories are used to capture domain properties. A source query transformer and a driving one are exploited to project domain-specific motion to the canonical space. The edited motion is projected back to the domain of the source with a transformer. Moreover, since no paired data is provided, we propose a novel cross-domain training scheme using data from two domains with the designed analogy constraint. Besides, we contribute a cartoon dataset in Disney style. Extensive evaluations demonstrate the superiority of our method over competing methods.
I See Dead People: Gray-Box Adversarial Attack on Image-To-Text Models
Modern image-to-text systems typically adopt the encoder-decoder framework, which comprises two main components: an image encoder, responsible for extracting image features, and a transformer-based decoder, used for generating captions. Taking inspiration from the analysis of neural networks' robustness against adversarial perturbations, we propose a novel gray-box algorithm for creating adversarial examples in image-to-text models. Unlike image classification tasks that have a finite set of class labels, finding visually similar adversarial examples in an image-to-text task poses greater challenges because the captioning system allows for a virtually infinite space of possible captions. In this paper, we present a gray-box adversarial attack on image-to-text, both untargeted and targeted. We formulate the process of discovering adversarial perturbations as an optimization problem that uses only the image-encoder component, meaning the proposed attack is language-model agnostic. Through experiments conducted on the ViT-GPT2 model, which is the most-used image-to-text model in Hugging Face, and the Flickr30k dataset, we demonstrate that our proposed attack successfully generates visually similar adversarial examples, both with untargeted and targeted captions. Notably, our attack operates in a gray-box manner, requiring no knowledge about the decoder module. We also show that our attacks fool the popular open-source platform Hugging Face.
Hatemoji: A Test Suite and Adversarially-Generated Dataset for Benchmarking and Detecting Emoji-based Hate
Detecting online hate is a complex task, and low-performing models have harmful consequences when used for sensitive applications such as content moderation. Emoji-based hate is an emerging challenge for automated detection. We present HatemojiCheck, a test suite of 3,930 short-form statements that allows us to evaluate performance on hateful language expressed with emoji. Using the test suite, we expose weaknesses in existing hate detection models. To address these weaknesses, we create the HatemojiBuild dataset using a human-and-model-in-the-loop approach. Models built with these 5,912 adversarial examples perform substantially better at detecting emoji-based hate, while retaining strong performance on text-only hate. Both HatemojiCheck and HatemojiBuild are made publicly available. See our Github Repository (https://github.com/HannahKirk/Hatemoji). HatemojiCheck, HatemojiBuild, and the final Hatemoji Model are also available on HuggingFace (https://huggingface.co/datasets/HannahRoseKirk/).
Understanding writing style in social media with a supervised contrastively pre-trained transformer
Online Social Networks serve as fertile ground for harmful behavior, ranging from hate speech to the dissemination of disinformation. Malicious actors now have unprecedented freedom to misbehave, leading to severe societal unrest and dire consequences, as exemplified by events such as the Capitol assault during the US presidential election and the Antivaxx movement during the COVID-19 pandemic. Understanding online language has become more pressing than ever. While existing works predominantly focus on content analysis, we aim to shift the focus towards understanding harmful behaviors by relating content to their respective authors. Numerous novel approaches attempt to learn the stylistic features of authors in texts, but many of these approaches are constrained by small datasets or sub-optimal training losses. To overcome these limitations, we introduce the Style Transformer for Authorship Representations (STAR), trained on a large corpus derived from public sources of 4.5 x 10^6 authored texts involving 70k heterogeneous authors. Our model leverages Supervised Contrastive Loss to teach the model to minimize the distance between texts authored by the same individual. This author pretext pre-training task yields competitive performance at zero-shot with PAN challenges on attribution and clustering. Additionally, we attain promising results on PAN verification challenges using a single dense layer, with our model serving as an embedding encoder. Finally, we present results from our test partition on Reddit. Using a support base of 8 documents of 512 tokens, we can discern authors from sets of up to 1616 authors with at least 80\% accuracy. We share our pre-trained model at huggingface (https://huggingface.co/AIDA-UPM/star) and our code is available at (https://github.com/jahuerta92/star)
FitMe: Deep Photorealistic 3D Morphable Model Avatars
In this paper, we introduce FitMe, a facial reflectance model and a differentiable rendering optimization pipeline, that can be used to acquire high-fidelity renderable human avatars from single or multiple images. The model consists of a multi-modal style-based generator, that captures facial appearance in terms of diffuse and specular reflectance, and a PCA-based shape model. We employ a fast differentiable rendering process that can be used in an optimization pipeline, while also achieving photorealistic facial shading. Our optimization process accurately captures both the facial reflectance and shape in high-detail, by exploiting the expressivity of the style-based latent representation and of our shape model. FitMe achieves state-of-the-art reflectance acquisition and identity preservation on single "in-the-wild" facial images, while it produces impressive scan-like results, when given multiple unconstrained facial images pertaining to the same identity. In contrast with recent implicit avatar reconstructions, FitMe requires only one minute and produces relightable mesh and texture-based avatars, that can be used by end-user applications.
Beyond One-Size-Fits-All: Personalized Harmful Content Detection with In-Context Learning
The proliferation of harmful online content--e.g., toxicity, spam, and negative sentiment--demands robust and adaptable moderation systems. However, prevailing moderation systems are centralized and task-specific, offering limited transparency and neglecting diverse user preferences--an approach ill-suited for privacy-sensitive or decentralized environments. We propose a novel framework that leverages in-context learning (ICL) with foundation models to unify the detection of toxicity, spam, and negative sentiment across binary, multi-class, and multi-label settings. Crucially, our approach enables lightweight personalization, allowing users to easily block new categories, unblock existing ones, or extend detection to semantic variations through simple prompt-based interventions--all without model retraining. Extensive experiments on public benchmarks (TextDetox, UCI SMS, SST2) and a new, annotated Mastodon dataset reveal that: (i) foundation models achieve strong cross-task generalization, often matching or surpassing task-specific fine-tuned models; (ii) effective personalization is achievable with as few as one user-provided example or definition; and (iii) augmenting prompts with label definitions or rationales significantly enhances robustness to noisy, real-world data. Our work demonstrates a definitive shift beyond one-size-fits-all moderation, establishing ICL as a practical, privacy-preserving, and highly adaptable pathway for the next generation of user-centric content safety systems. To foster reproducibility and facilitate future research, we publicly release our code on GitHub and the annotated Mastodon dataset on Hugging Face.
PersonaHOI: Effortlessly Improving Personalized Face with Human-Object Interaction Generation
We introduce PersonaHOI, a training- and tuning-free framework that fuses a general StableDiffusion model with a personalized face diffusion (PFD) model to generate identity-consistent human-object interaction (HOI) images. While existing PFD models have advanced significantly, they often overemphasize facial features at the expense of full-body coherence, PersonaHOI introduces an additional StableDiffusion (SD) branch guided by HOI-oriented text inputs. By incorporating cross-attention constraints in the PFD branch and spatial merging at both latent and residual levels, PersonaHOI preserves personalized facial details while ensuring interactive non-facial regions. Experiments, validated by a novel interaction alignment metric, demonstrate the superior realism and scalability of PersonaHOI, establishing a new standard for practical personalized face with HOI generation. Our code will be available at https://github.com/JoyHuYY1412/PersonaHOI
The State of Documentation Practices of Third-party Machine Learning Models and Datasets
Model stores offer third-party ML models and datasets for easy project integration, minimizing coding efforts. One might hope to find detailed specifications of these models and datasets in the documentation, leveraging documentation standards such as model and dataset cards. In this study, we use statistical analysis and hybrid card sorting to assess the state of the practice of documenting model cards and dataset cards in one of the largest model stores in use today--Hugging Face (HF). Our findings show that only 21,902 models (39.62\%) and 1,925 datasets (28.48\%) have documentation. Furthermore, we observe inconsistency in ethics and transparency-related documentation for ML models and datasets.
Enhancing Training Efficiency Using Packing with Flash Attention
Padding is often used in tuning LLM models by adding special tokens to shorter training examples to match the length of the longest sequence in each batch. While this ensures uniformity for batch processing, it introduces inefficiencies by including irrelevant padding tokens in the computation and wastes GPU resources. On the other hand, the Hugging Face SFT trainer offers the option to use packing to combine multiple training examples up to the maximum sequence length. This allows for maximal utilization of GPU resources. However, without proper masking of each packed training example, attention will not be computed correctly when using SFT trainer. We enable and then analyse packing and Flash Attention with proper attention masking of each example and show the benefits of this training paradigm.
One Shot, One Talk: Whole-body Talking Avatar from a Single Image
Building realistic and animatable avatars still requires minutes of multi-view or monocular self-rotating videos, and most methods lack precise control over gestures and expressions. To push this boundary, we address the challenge of constructing a whole-body talking avatar from a single image. We propose a novel pipeline that tackles two critical issues: 1) complex dynamic modeling and 2) generalization to novel gestures and expressions. To achieve seamless generalization, we leverage recent pose-guided image-to-video diffusion models to generate imperfect video frames as pseudo-labels. To overcome the dynamic modeling challenge posed by inconsistent and noisy pseudo-videos, we introduce a tightly coupled 3DGS-mesh hybrid avatar representation and apply several key regularizations to mitigate inconsistencies caused by imperfect labels. Extensive experiments on diverse subjects demonstrate that our method enables the creation of a photorealistic, precisely animatable, and expressive whole-body talking avatar from just a single image.
Face-LLaVA: Facial Expression and Attribute Understanding through Instruction Tuning
The human face plays a central role in social communication, necessitating the use of performant computer vision tools for human-centered applications. We propose Face-LLaVA, a multimodal large language model for face-centered, in-context learning, including facial expression and attribute recognition. Additionally, Face-LLaVA is able to generate natural language descriptions that can be used for reasoning. Leveraging existing visual databases, we first developed FaceInstruct-1M, a face-centered database for instruction tuning MLLMs for face processing. We then developed a novel face-specific visual encoder powered by Face-Region Guided Cross-Attention that integrates face geometry with local visual features. We evaluated the proposed method across nine different datasets and five different face processing tasks, including facial expression recognition, action unit detection, facial attribute detection, age estimation and deepfake detection. Face-LLaVA achieves superior results compared to existing open-source MLLMs and competitive performance compared to commercial solutions. Our model output also receives a higher reasoning rating by GPT under a zero-shot setting across all the tasks. Both our dataset and model wil be released at https://face-llava.github.io to support future advancements in social AI and foundational vision-language research.
Bind-Your-Avatar: Multi-Talking-Character Video Generation with Dynamic 3D-mask-based Embedding Router
Recent years have witnessed remarkable advances in audio-driven talking head generation. However, existing approaches predominantly focus on single-character scenarios. While some methods can create separate conversation videos between two individuals, the critical challenge of generating unified conversation videos with multiple physically co-present characters sharing the same spatial environment remains largely unaddressed. This setting presents two key challenges: audio-to-character correspondence control and the lack of suitable datasets featuring multi-character talking videos within the same scene. To address these challenges, we introduce Bind-Your-Avatar, an MM-DiT-based model specifically designed for multi-talking-character video generation in the same scene. Specifically, we propose (1) A novel framework incorporating a fine-grained Embedding Router that binds `who' and `speak what' together to address the audio-to-character correspondence control. (2) Two methods for implementing a 3D-mask embedding router that enables frame-wise, fine-grained control of individual characters, with distinct loss functions based on observed geometric priors and a mask refinement strategy to enhance the accuracy and temporal smoothness of the predicted masks. (3) The first dataset, to the best of our knowledge, specifically constructed for multi-talking-character video generation, and accompanied by an open-source data processing pipeline, and (4) A benchmark for the dual-talking-characters video generation, with extensive experiments demonstrating superior performance over multiple state-of-the-art methods.
Face Anonymization Made Simple
Current face anonymization techniques often depend on identity loss calculated by face recognition models, which can be inaccurate and unreliable. Additionally, many methods require supplementary data such as facial landmarks and masks to guide the synthesis process. In contrast, our approach uses diffusion models with only a reconstruction loss, eliminating the need for facial landmarks or masks while still producing images with intricate, fine-grained details. We validated our results on two public benchmarks through both quantitative and qualitative evaluations. Our model achieves state-of-the-art performance in three key areas: identity anonymization, facial attribute preservation, and image quality. Beyond its primary function of anonymization, our model can also perform face swapping tasks by incorporating an additional facial image as input, demonstrating its versatility and potential for diverse applications. Our code and models are available at https://github.com/hanweikung/face_anon_simple .
Efficient and Effective Vocabulary Expansion Towards Multilingual Large Language Models
This report introduces EEVE-Korean-v1.0, a Korean adaptation of large language models that exhibit remarkable capabilities across English and Korean text understanding. Building on recent highly capable but English-centric LLMs, such as SOLAR-10.7B and Phi-2, where non-English texts are inefficiently processed with English-centric tokenizers, we present an efficient and effective vocabulary expansion (EEVE) method, which encompasses parameter freezing and subword initialization. In contrast to previous efforts that believe new embeddings require trillions of training tokens, we show that our method can significantly boost non-English proficiency within just 2 billion tokens. Surpassing most instruction-tuned LLMs on the Open Ko-LLM Leaderboard, as of January 2024, our model EEVE-Korean-10.8B-v1.0 ranks as the leading Korean pre-trained model in the open-source community, according to Hugging Face's leaderboard. We open-source our models on Huggingface to empower the open research community in various languages.
MIKU-PAL: An Automated and Standardized Multi-Modal Method for Speech Paralinguistic and Affect Labeling
Acquiring large-scale emotional speech data with strong consistency remains a challenge for speech synthesis. This paper presents MIKU-PAL, a fully automated multimodal pipeline for extracting high-consistency emotional speech from unlabeled video data. Leveraging face detection and tracking algorithms, we developed an automatic emotion analysis system using a multimodal large language model (MLLM). Our results demonstrate that MIKU-PAL can achieve human-level accuracy (68.5% on MELD) and superior consistency (0.93 Fleiss kappa score) while being much cheaper and faster than human annotation. With the high-quality, flexible, and consistent annotation from MIKU-PAL, we can annotate fine-grained speech emotion categories of up to 26 types, validated by human annotators with 83% rationality ratings. Based on our proposed system, we further released a fine-grained emotional speech dataset MIKU-EmoBench(131.2 hours) as a new benchmark for emotional text-to-speech and visual voice cloning.
AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation
In this paper, we propose a novel framework to translate a portrait photo-face into an anime appearance. Our aim is to synthesize anime-faces which are style-consistent with a given reference anime-face. However, unlike typical translation tasks, such anime-face translation is challenging due to complex variations of appearances among anime-faces. Existing methods often fail to transfer the styles of reference anime-faces, or introduce noticeable artifacts/distortions in the local shapes of their generated faces. We propose AniGAN, a novel GAN-based translator that synthesizes high-quality anime-faces. Specifically, a new generator architecture is proposed to simultaneously transfer color/texture styles and transform local facial shapes into anime-like counterparts based on the style of a reference anime-face, while preserving the global structure of the source photo-face. We propose a double-branch discriminator to learn both domain-specific distributions and domain-shared distributions, helping generate visually pleasing anime-faces and effectively mitigate artifacts. Extensive experiments on selfie2anime and a new face2anime dataset qualitatively and quantitatively demonstrate the superiority of our method over state-of-the-art methods. The new dataset is available at https://github.com/bing-li-ai/AniGAN .
FantasyPortrait: Enhancing Multi-Character Portrait Animation with Expression-Augmented Diffusion Transformers
Producing expressive facial animations from static images is a challenging task. Prior methods relying on explicit geometric priors (e.g., facial landmarks or 3DMM) often suffer from artifacts in cross reenactment and struggle to capture subtle emotions. Furthermore, existing approaches lack support for multi-character animation, as driving features from different individuals frequently interfere with one another, complicating the task. To address these challenges, we propose FantasyPortrait, a diffusion transformer based framework capable of generating high-fidelity and emotion-rich animations for both single- and multi-character scenarios. Our method introduces an expression-augmented learning strategy that utilizes implicit representations to capture identity-agnostic facial dynamics, enhancing the model's ability to render fine-grained emotions. For multi-character control, we design a masked cross-attention mechanism that ensures independent yet coordinated expression generation, effectively preventing feature interference. To advance research in this area, we propose the Multi-Expr dataset and ExprBench, which are specifically designed datasets and benchmarks for training and evaluating multi-character portrait animations. Extensive experiments demonstrate that FantasyPortrait significantly outperforms state-of-the-art methods in both quantitative metrics and qualitative evaluations, excelling particularly in challenging cross reenactment and multi-character contexts. Our project page is https://fantasy-amap.github.io/fantasy-portrait/.
GUAVA: Generalizable Upper Body 3D Gaussian Avatar
Reconstructing a high-quality, animatable 3D human avatar with expressive facial and hand motions from a single image has gained significant attention due to its broad application potential. 3D human avatar reconstruction typically requires multi-view or monocular videos and training on individual IDs, which is both complex and time-consuming. Furthermore, limited by SMPLX's expressiveness, these methods often focus on body motion but struggle with facial expressions. To address these challenges, we first introduce an expressive human model (EHM) to enhance facial expression capabilities and develop an accurate tracking method. Based on this template model, we propose GUAVA, the first framework for fast animatable upper-body 3D Gaussian avatar reconstruction. We leverage inverse texture mapping and projection sampling techniques to infer Ubody (upper-body) Gaussians from a single image. The rendered images are refined through a neural refiner. Experimental results demonstrate that GUAVA significantly outperforms previous methods in rendering quality and offers significant speed improvements, with reconstruction times in the sub-second range (0.1s), and supports real-time animation and rendering.
A Survey on Mixture of Experts
Large language models (LLMs) have garnered unprecedented advancements across diverse fields, ranging from natural language processing to computer vision and beyond. The prowess of LLMs is underpinned by their substantial model size, extensive and diverse datasets, and the vast computational power harnessed during training, all of which contribute to the emergent abilities of LLMs (e.g., in-context learning) that are not present in small models. Within this context, the mixture of experts (MoE) has emerged as an effective method for substantially scaling up model capacity with minimal computation overhead, gaining significant attention from academia and industry. Despite its growing prevalence, there lacks a systematic and comprehensive review of the literature on MoE. This survey seeks to bridge that gap, serving as an essential resource for researchers delving into the intricacies of MoE. We first briefly introduce the structure of the MoE layer, followed by proposing a new taxonomy of MoE. Next, we overview the core designs for various MoE models including both algorithmic and systemic aspects, alongside collections of available open-source implementations, hyperparameter configurations and empirical evaluations. Furthermore, we delineate the multifaceted applications of MoE in practice, and outline some potential directions for future research. To facilitate ongoing updates and the sharing of cutting-edge developments in MoE research, we have established a resource repository accessible at https://github.com/withinmiaov/A-Survey-on-Mixture-of-Experts.
Collaborative Neural Rendering using Anime Character Sheets
Drawing images of characters with desired poses is an essential but laborious task in anime production. In this paper, we present the Collaborative Neural Rendering (CoNR) method, which creates new images for specified poses from a few reference images (AKA Character Sheets). In general, the high diversity of body shapes of anime characters defies the employment of universal body models like SMPL, which are developed from real-world humans. To overcome this difficulty, CoNR uses a compact and easy-to-obtain landmark encoding to avoid creating a unified UV mapping in the pipeline. In addition, the performance of CoNR can be significantly improved when referring to multiple reference images, thanks to feature space cross-view warping in a carefully designed neural network. Moreover, we have collected a character sheet dataset containing over 700,000 hand-drawn and synthesized images of diverse poses to facilitate research in this area. Our code and demo are available at https://github.com/megvii-research/CoNR.
Semantify: Simplifying the Control of 3D Morphable Models using CLIP
We present Semantify: a self-supervised method that utilizes the semantic power of CLIP language-vision foundation model to simplify the control of 3D morphable models. Given a parametric model, training data is created by randomly sampling the model's parameters, creating various shapes and rendering them. The similarity between the output images and a set of word descriptors is calculated in CLIP's latent space. Our key idea is first to choose a small set of semantically meaningful and disentangled descriptors that characterize the 3DMM, and then learn a non-linear mapping from scores across this set to the parametric coefficients of the given 3DMM. The non-linear mapping is defined by training a neural network without a human-in-the-loop. We present results on numerous 3DMMs: body shape models, face shape and expression models, as well as animal shapes. We demonstrate how our method defines a simple slider interface for intuitive modeling, and show how the mapping can be used to instantly fit a 3D parametric body shape to in-the-wild images.
LLaMA-MoE v2: Exploring Sparsity of LLaMA from Perspective of Mixture-of-Experts with Post-Training
Recently, inspired by the concept of sparsity, Mixture-of-Experts (MoE) models have gained increasing popularity for scaling model size while keeping the number of activated parameters constant. In this study, we thoroughly investigate the sparsity of the dense LLaMA model by constructing MoE for both the attention (i.e., Attention MoE) and MLP (i.e., MLP MoE) modules in the transformer blocks. Specifically, we investigate different expert construction methods and granularities under the same activation conditions to analyze the impact of sparsifying the model. Additionally, to comprehensively evaluate the model's capabilities across various domains (e.g., conversation, code, math) after sparsification, we apply sparsity to the instructed large language models (LLMs) and construct instructed MoE models. To counteract the performance degradation resulting from increased sparsity, we design a two-stage post-training strategy to enhance model performance. Experiments on the LLaMA3 model demonstrate the potential effectiveness of this approach for future developments of instructed MoE models. The source codes and models are available at: https://github.com/OpenSparseLLMs/LLaMA-MoE-v2.
FunAudioLLM: Voice Understanding and Generation Foundation Models for Natural Interaction Between Humans and LLMs
This report introduces FunAudioLLM, a model family designed to enhance natural voice interactions between humans and large language models (LLMs). At its core are two innovative models: SenseVoice, which handles multilingual speech recognition, emotion recognition, and audio event detection; and CosyVoice, which facilitates natural speech generation with control over multiple languages, timbre, speaking style, and speaker identity. SenseVoice-Small delivers exceptionally low-latency ASR for 5 languages, and SenseVoice-Large supports high-precision ASR for over 50 languages, while CosyVoice excels in multi-lingual voice generation, zero-shot in-context learning, cross-lingual voice cloning, and instruction-following capabilities. The models related to SenseVoice and CosyVoice have been open-sourced on Modelscope and Huggingface, along with the corresponding training, inference, and fine-tuning codes released on GitHub. By integrating these models with LLMs, FunAudioLLM enables applications such as speech-to-speech translation, emotional voice chat, interactive podcasts, and expressive audiobook narration, thereby pushing the boundaries of voice interaction technology. Demos are available at https://fun-audio-llm.github.io, and the code can be accessed at https://github.com/FunAudioLLM.
LongVILA: Scaling Long-Context Visual Language Models for Long Videos
Long-context capability is critical for multi-modal foundation models. We introduce LongVILA, a full-stack solution for long-context vision-language models, including system, model training, and dataset development. On the system side, we introduce the first Multi-Modal Sequence Parallelism (MM-SP) system that enables long-context training and inference, enabling 2M context length training on 256 GPUs. MM-SP is also efficient, being 2.1x - 5.7x faster than Ring-Style Sequence Parallelism and 1.1x - 1.4x faster than Megatron-LM in text-only settings. Moreover, it seamlessly integrates with Hugging Face Transformers. For model training, we propose a five-stage pipeline comprising alignment, pre-training, context extension, and long-short joint supervised fine-tuning. Regarding datasets, we meticulously construct large-scale visual language pre-training datasets and long video instruction-following datasets to support our multi-stage training process. The full-stack solution extends the feasible frame number of VILA by a factor of 128 (from 8 to 1024 frames) and improves long video captioning score from 2.00 to 3.26 (1.6x), achieving 99.5% accuracy in 1400-frames video (274k context length) needle in a haystack. LongVILA-8B also demonstrates a consistent improvement in performance on long videos within the VideoMME benchmark as the video frames increase.
Human Gaussian Splatting: Real-time Rendering of Animatable Avatars
This work addresses the problem of real-time rendering of photorealistic human body avatars learned from multi-view videos. While the classical approaches to model and render virtual humans generally use a textured mesh, recent research has developed neural body representations that achieve impressive visual quality. However, these models are difficult to render in real-time and their quality degrades when the character is animated with body poses different than the training observations. We propose an animatable human model based on 3D Gaussian Splatting, that has recently emerged as a very efficient alternative to neural radiance fields. The body is represented by a set of gaussian primitives in a canonical space which is deformed with a coarse to fine approach that combines forward skinning and local non-rigid refinement. We describe how to learn our Human Gaussian Splatting (HuGS) model in an end-to-end fashion from multi-view observations, and evaluate it against the state-of-the-art approaches for novel pose synthesis of clothed body. Our method achieves 1.5 dB PSNR improvement over the state-of-the-art on THuman4 dataset while being able to render in real-time (80 fps for 512x512 resolution).
No Language Data Left Behind: A Comparative Study of CJK Language Datasets in the Hugging Face Ecosystem
Recent advances in Natural Language Processing (NLP) have underscored the crucial role of high-quality datasets in building large language models (LLMs). However, while extensive resources and analyses exist for English, the landscape for East Asian languages - particularly Chinese, Japanese, and Korean (CJK) - remains fragmented and underexplored, despite these languages together serving over 1.6 billion speakers. To address this gap, we investigate the HuggingFace ecosystem from a cross-linguistic perspective, focusing on how cultural norms, research environments, and institutional practices shape dataset availability and quality. Drawing on more than 3,300 datasets, we employ quantitative and qualitative methods to examine how these factors drive distinct creation and curation patterns across Chinese, Japanese, and Korean NLP communities. Our findings highlight the large-scale and often institution-driven nature of Chinese datasets, grassroots community-led development in Korean NLP, and an entertainment- and subculture-focused emphasis on Japanese collections. By uncovering these patterns, we reveal practical strategies for enhancing dataset documentation, licensing clarity, and cross-lingual resource sharing - ultimately guiding more effective and culturally attuned LLM development in East Asia. We conclude by discussing best practices for future dataset curation and collaboration, aiming to strengthen resource development across all three languages.
AutoMoE: Heterogeneous Mixture-of-Experts with Adaptive Computation for Efficient Neural Machine Translation
Mixture-of-Expert (MoE) models have obtained state-of-the-art performance in Neural Machine Translation (NMT) tasks. Existing works in MoE mostly consider a homogeneous design where the same number of experts of the same size are placed uniformly throughout the network. Furthermore, existing MoE works do not consider computational constraints (e.g., FLOPs, latency) to guide their design. To this end, we develop AutoMoE -- a framework for designing heterogeneous MoE's under computational constraints. AutoMoE leverages Neural Architecture Search (NAS) to obtain efficient sparse MoE sub-transformers with 4x inference speedup (CPU) and FLOPs reduction over manually designed Transformers, with parity in BLEU score over dense Transformer and within 1 BLEU point of MoE SwitchTransformer, on aggregate over benchmark datasets for NMT. Heterogeneous search space with dense and sparsely activated Transformer modules (e.g., how many experts? where to place them? what should be their sizes?) allows for adaptive compute -- where different amounts of computations are used for different tokens in the input. Adaptivity comes naturally from routing decisions which send tokens to experts of different sizes. AutoMoE code, data, and trained models are available at https://aka.ms/AutoMoE.
Naming Practices of Pre-Trained Models in Hugging Face
As innovation in deep learning continues, many engineers seek to adopt Pre-Trained Models (PTMs) as components in computer systems. Researchers publish PTMs, which engineers adapt for quality or performance prior to deployment. PTM authors should choose appropriate names for their PTMs, which would facilitate model discovery and reuse. However, prior research has reported that model names are not always well chosen - and are sometimes erroneous. The naming for PTM packages has not been systematically studied. In this paper, we frame and conduct the first empirical investigation of PTM naming practices in the Hugging Face PTM registry. We initiated our study with a survey of 108 Hugging Face users to understand the practices in PTM naming. From our survey analysis, we highlight discrepancies from traditional software package naming, and present findings on naming practices. Our findings indicate there is a great mismatch between engineers' preferences and practical practices of PTM naming. We also present practices on detecting naming anomalies and introduce a novel automated DNN ARchitecture Assessment technique (DARA), capable of detecting PTM naming anomalies. We envision future works on leveraging meta-features of PTMs to improve model reuse and trustworthiness.
FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset
We present FaceVerse, a fine-grained 3D Neural Face Model, which is built from hybrid East Asian face datasets containing 60K fused RGB-D images and 2K high-fidelity 3D head scan models. A novel coarse-to-fine structure is proposed to take better advantage of our hybrid dataset. In the coarse module, we generate a base parametric model from large-scale RGB-D images, which is able to predict accurate rough 3D face models in different genders, ages, etc. Then in the fine module, a conditional StyleGAN architecture trained with high-fidelity scan models is introduced to enrich elaborate facial geometric and texture details. Note that different from previous methods, our base and detailed modules are both changeable, which enables an innovative application of adjusting both the basic attributes and the facial details of 3D face models. Furthermore, we propose a single-image fitting framework based on differentiable rendering. Rich experiments show that our method outperforms the state-of-the-art methods.
FaceShot: Bring Any Character into Life
In this paper, we present FaceShot, a novel training-free portrait animation framework designed to bring any character into life from any driven video without fine-tuning or retraining. We achieve this by offering precise and robust reposed landmark sequences from an appearance-guided landmark matching module and a coordinate-based landmark retargeting module. Together, these components harness the robust semantic correspondences of latent diffusion models to produce facial motion sequence across a wide range of character types. After that, we input the landmark sequences into a pre-trained landmark-driven animation model to generate animated video. With this powerful generalization capability, FaceShot can significantly extend the application of portrait animation by breaking the limitation of realistic portrait landmark detection for any stylized character and driven video. Also, FaceShot is compatible with any landmark-driven animation model, significantly improving overall performance. Extensive experiments on our newly constructed character benchmark CharacBench confirm that FaceShot consistently surpasses state-of-the-art (SOTA) approaches across any character domain. More results are available at our project website https://faceshot2024.github.io/faceshot/.
A Closer Look at Geometric Temporal Dynamics for Face Anti-Spoofing
Face anti-spoofing (FAS) is indispensable for a face recognition system. Many texture-driven countermeasures were developed against presentation attacks (PAs), but the performance against unseen domains or unseen spoofing types is still unsatisfactory. Instead of exhaustively collecting all the spoofing variations and making binary decisions of live/spoof, we offer a new perspective on the FAS task to distinguish between normal and abnormal movements of live and spoof presentations. We propose Geometry-Aware Interaction Network (GAIN), which exploits dense facial landmarks with spatio-temporal graph convolutional network (ST-GCN) to establish a more interpretable and modularized FAS model. Additionally, with our cross-attention feature interaction mechanism, GAIN can be easily integrated with other existing methods to significantly boost performance. Our approach achieves state-of-the-art performance in the standard intra- and cross-dataset evaluations. Moreover, our model outperforms state-of-the-art methods by a large margin in the cross-dataset cross-type protocol on CASIA-SURF 3DMask (+10.26% higher AUC score), exhibiting strong robustness against domain shifts and unseen spoofing types.
HeadCraft: Modeling High-Detail Shape Variations for Animated 3DMMs
Current advances in human head modeling allow to generate plausible-looking 3D head models via neural representations. Nevertheless, constructing complete high-fidelity head models with explicitly controlled animation remains an issue. Furthermore, completing the head geometry based on a partial observation, e.g. coming from a depth sensor, while preserving details is often problematic for the existing methods. We introduce a generative model for detailed 3D head meshes on top of an articulated 3DMM which allows explicit animation and high-detail preservation at the same time. Our method is trained in two stages. First, we register a parametric head model with vertex displacements to each mesh of the recently introduced NPHM dataset of accurate 3D head scans. The estimated displacements are baked into a hand-crafted UV layout. Second, we train a StyleGAN model in order to generalize over the UV maps of displacements. The decomposition of the parametric model and high-quality vertex displacements allows us to animate the model and modify it semantically. We demonstrate the results of unconditional generation and fitting to the full or partial observation. The project page is available at https://seva100.github.io/headcraft.
m&m's: A Benchmark to Evaluate Tool-Use for multi-step multi-modal Tasks
Real-world multi-modal problems are rarely solved by a single machine learning model, and often require multi-step computational plans that involve stitching several models. Tool-augmented LLMs hold tremendous promise for automating the generation of such computational plans. However, the lack of standardized benchmarks for evaluating LLMs as planners for multi-step multi-modal tasks has prevented a systematic study of planner design decisions. Should LLMs generate a full plan in a single shot or step-by-step? Should they invoke tools directly with Python code or through structured data formats like JSON? Does feedback improve planning? To answer these questions and more, we introduce m&m's: a benchmark containing 4K+ multi-step multi-modal tasks involving 33 tools that include multi-modal models, (free) public APIs, and image processing modules. For each of these task queries, we provide automatically generated plans using this realistic toolset. We further provide a high-quality subset of 1,565 task plans that are human-verified and correctly executable. With m&m's, we evaluate 6 popular LLMs with 2 planning strategies (multi-step vs. step-by-step planning), 2 plan formats (JSON vs. code), and 3 types of feedback (parsing/verification/execution). Finally, we summarize takeaways from our extensive experiments. Our dataset and code are available on HuggingFace (https://huggingface.co/datasets/zixianma/mnms) and Github (https://github.com/RAIVNLab/mnms).
