new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 8

MoCHA: Advanced Vision-Language Reasoning with MoE Connector and Hierarchical Group Attention

Vision large language models (VLLMs) are focusing primarily on handling complex and fine-grained visual information by incorporating advanced vision encoders and scaling up visual models. However, these approaches face high training and inference costs, as well as challenges in extracting visual details, effectively bridging across modalities. In this work, we propose a novel visual framework, MoCHA, to address these issues. Our framework integrates four vision backbones (i.e., CLIP, SigLIP, DINOv2 and ConvNeXt) to extract complementary visual features and is equipped with a sparse Mixture of Experts Connectors (MoECs) module to dynamically select experts tailored to different visual dimensions. To mitigate redundant or insufficient use of the visual information encoded by the MoECs module, we further design a Hierarchical Group Attention (HGA) with intra- and inter-group operations and an adaptive gating strategy for encoded visual features. We train MoCHA on two mainstream LLMs (e.g., Phi2-2.7B and Vicuna-7B) and evaluate their performance across various benchmarks. Notably, MoCHA outperforms state-of-the-art open-weight models on various tasks. For example, compared to CuMo (Mistral-7B), our MoCHA (Phi2-2.7B) presents outstanding abilities to mitigate hallucination by showing improvements of 3.25% in POPE and to follow visual instructions by raising 153 points on MME. Finally, ablation studies further confirm the effectiveness and robustness of the proposed MoECs and HGA in improving the overall performance of MoCHA.

  • 6 authors
·
Jul 30, 2025

Pyramidal Adaptive Cross-Gating for Multimodal Detection

Object detection in aerial imagery is a critical task in applications such as UAV reconnaissance. Although existing methods have extensively explored feature interaction between different modalities, they commonly rely on simple fusion strategies for feature aggregation. This introduces two critical flaws: it is prone to cross-modal noise and disrupts the hierarchical structure of the feature pyramid, thereby impairing the fine-grained detection of small objects. To address this challenge, we propose the Pyramidal Adaptive Cross-Gating Network (PACGNet), an architecture designed to perform deep fusion within the backbone. To this end, we design two core components: the Symmetrical Cross-Gating (SCG) module and the Pyramidal Feature-aware Multimodal Gating (PFMG) module. The SCG module employs a bidirectional, symmetrical "horizontal" gating mechanism to selectively absorb complementary information, suppress noise, and preserve the semantic integrity of each modality. The PFMG module reconstructs the feature hierarchy via a progressive hierarchical gating mechanism. This leverages the detailed features from a preceding, higher-resolution level to guide the fusion at the current, lower-resolution level, effectively preserving fine-grained details as features propagate. Through evaluations conducted on the DroneVehicle and VEDAI datasets, our PACGNet sets a new state-of-the-art benchmark, with mAP50 scores reaching 81.7% and 82.1% respectively.

  • 2 authors
·
Dec 20, 2025