new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 8

Discrete Audio Tokens: More Than a Survey!

Discrete audio tokens are compact representations that aim to preserve perceptual quality, phonetic content, and speaker characteristics while enabling efficient storage and inference, as well as competitive performance across diverse downstream tasks.They provide a practical alternative to continuous features, enabling the integration of speech and audio into modern large language models (LLMs). As interest in token-based audio processing grows, various tokenization methods have emerged, and several surveys have reviewed the latest progress in the field. However, existing studies often focus on specific domains or tasks and lack a unified comparison across various benchmarks. This paper presents a systematic review and benchmark of discrete audio tokenizers, covering three domains: speech, music, and general audio. We propose a taxonomy of tokenization approaches based on encoder-decoder, quantization techniques, training paradigm, streamability, and application domains. We evaluate tokenizers on multiple benchmarks for reconstruction, downstream performance, and acoustic language modeling, and analyze trade-offs through controlled ablation studies. Our findings highlight key limitations, practical considerations, and open challenges, providing insight and guidance for future research in this rapidly evolving area. For more information, including our main results and tokenizer database, please refer to our website: https://poonehmousavi.github.io/dates-website/.

  • 21 authors
·
Jun 11, 2025 2

Hallo2: Long-Duration and High-Resolution Audio-Driven Portrait Image Animation

Recent advances in latent diffusion-based generative models for portrait image animation, such as Hallo, have achieved impressive results in short-duration video synthesis. In this paper, we present updates to Hallo, introducing several design enhancements to extend its capabilities. First, we extend the method to produce long-duration videos. To address substantial challenges such as appearance drift and temporal artifacts, we investigate augmentation strategies within the image space of conditional motion frames. Specifically, we introduce a patch-drop technique augmented with Gaussian noise to enhance visual consistency and temporal coherence over long duration. Second, we achieve 4K resolution portrait video generation. To accomplish this, we implement vector quantization of latent codes and apply temporal alignment techniques to maintain coherence across the temporal dimension. By integrating a high-quality decoder, we realize visual synthesis at 4K resolution. Third, we incorporate adjustable semantic textual labels for portrait expressions as conditional inputs. This extends beyond traditional audio cues to improve controllability and increase the diversity of the generated content. To the best of our knowledge, Hallo2, proposed in this paper, is the first method to achieve 4K resolution and generate hour-long, audio-driven portrait image animations enhanced with textual prompts. We have conducted extensive experiments to evaluate our method on publicly available datasets, including HDTF, CelebV, and our introduced "Wild" dataset. The experimental results demonstrate that our approach achieves state-of-the-art performance in long-duration portrait video animation, successfully generating rich and controllable content at 4K resolution for duration extending up to tens of minutes. Project page https://fudan-generative-vision.github.io/hallo2

  • 9 authors
·
Oct 10, 2024

CoNeTTE: An efficient Audio Captioning system leveraging multiple datasets with Task Embedding

Automated Audio Captioning (AAC) involves generating natural language descriptions of audio content, using encoder-decoder architectures. An audio encoder produces audio embeddings fed to a decoder, usually a Transformer decoder, for caption generation. In this work, we describe our model, which novelty, compared to existing models, lies in the use of a ConvNeXt architecture as audio encoder, adapted from the vision domain to audio classification. This model, called CNext-trans, achieved state-of-the-art scores on the AudioCaps (AC) dataset and performed competitively on Clotho (CL), while using four to forty times fewer parameters than existing models. We examine potential biases in the AC dataset due to its origin from AudioSet by investigating unbiased encoder's impact on performance. Using the well-known PANN's CNN14, for instance, as an unbiased encoder, we observed a 1.7% absolute reduction in SPIDEr score (where higher scores indicate better performance). To improve cross-dataset performance, we conducted experiments by combining multiple AAC datasets (AC, CL, MACS, WavCaps) for training. Although this strategy enhanced overall model performance across datasets, it still fell short compared to models trained specifically on a single target dataset, indicating the absence of a one-size-fits-all model. To mitigate performance gaps between datasets, we introduced a Task Embedding (TE) token, allowing the model to identify the source dataset for each input sample. We provide insights into the impact of these TEs on both the form (words) and content (sound event types) of the generated captions. The resulting model, named CoNeTTE, an unbiased CNext-trans model enriched with dataset-specific Task Embeddings, achieved SPIDEr scores of 44.1% and 30.5% on AC and CL, respectively. Code available: https://github.com/Labbeti/conette-audio-captioning.

  • 3 authors
·
Sep 1, 2023

SoundReactor: Frame-level Online Video-to-Audio Generation

Prevailing Video-to-Audio (V2A) generation models operate offline, assuming an entire video sequence or chunks of frames are available beforehand. This critically limits their use in interactive applications such as live content creation and emerging generative world models. To address this gap, we introduce the novel task of frame-level online V2A generation, where a model autoregressively generates audio from video without access to future video frames. Furthermore, we propose SoundReactor, which, to the best of our knowledge, is the first simple yet effective framework explicitly tailored for this task. Our design enforces end-to-end causality and targets low per-frame latency with audio-visual synchronization. Our model's backbone is a decoder-only causal transformer over continuous audio latents. For vision conditioning, it leverages grid (patch) features extracted from the smallest variant of the DINOv2 vision encoder, which are aggregated into a single token per frame to maintain end-to-end causality and efficiency. The model is trained through a diffusion pre-training followed by consistency fine-tuning to accelerate the diffusion head decoding. On a benchmark of diverse gameplay videos from AAA titles, our model successfully generates semantically and temporally aligned, high-quality full-band stereo audio, validated by both objective and human evaluations. Furthermore, our model achieves low per-frame waveform-level latency (26.3ms with the head NFE=1, 31.5ms with NFE=4) on 30FPS, 480p videos using a single H100. Demo samples are available at https://koichi-saito-sony.github.io/soundreactor/.

Sony Sony
·
Oct 2, 2025 2

A Unified Audio-Visual Learning Framework for Localization, Separation, and Recognition

The ability to accurately recognize, localize and separate sound sources is fundamental to any audio-visual perception task. Historically, these abilities were tackled separately, with several methods developed independently for each task. However, given the interconnected nature of source localization, separation, and recognition, independent models are likely to yield suboptimal performance as they fail to capture the interdependence between these tasks. To address this problem, we propose a unified audio-visual learning framework (dubbed OneAVM) that integrates audio and visual cues for joint localization, separation, and recognition. OneAVM comprises a shared audio-visual encoder and task-specific decoders trained with three objectives. The first objective aligns audio and visual representations through a localized audio-visual correspondence loss. The second tackles visual source separation using a traditional mix-and-separate framework. Finally, the third objective reinforces visual feature separation and localization by mixing images in pixel space and aligning their representations with those of all corresponding sound sources. Extensive experiments on MUSIC, VGG-Instruments, VGG-Music, and VGGSound datasets demonstrate the effectiveness of OneAVM for all three tasks, audio-visual source localization, separation, and nearest neighbor recognition, and empirically demonstrate a strong positive transfer between them.

  • 2 authors
·
May 30, 2023

Qwen-Audio: Advancing Universal Audio Understanding via Unified Large-Scale Audio-Language Models

Recently, instruction-following audio-language models have received broad attention for audio interaction with humans. However, the absence of pre-trained audio models capable of handling diverse audio types and tasks has hindered progress in this field. Consequently, most existing works have only been able to support a limited range of interaction capabilities. In this paper, we develop the Qwen-Audio model and address this limitation by scaling up audio-language pre-training to cover over 30 tasks and various audio types, such as human speech, natural sounds, music, and songs, to facilitate universal audio understanding abilities. However, directly co-training all tasks and datasets can lead to interference issues, as the textual labels associated with different datasets exhibit considerable variations due to differences in task focus, language, granularity of annotation, and text structure. To overcome the one-to-many interference, we carefully design a multi-task training framework by conditioning on a sequence of hierarchical tags to the decoder for encouraging knowledge sharing and avoiding interference through shared and specified tags respectively. Remarkably, Qwen-Audio achieves impressive performance across diverse benchmark tasks without requiring any task-specific fine-tuning, surpassing its counterparts. Building upon the capabilities of Qwen-Audio, we further develop Qwen-Audio-Chat, which allows for input from various audios and text inputs, enabling multi-turn dialogues and supporting various audio-central scenarios.

  • 8 authors
·
Nov 14, 2023

VALOR: Vision-Audio-Language Omni-Perception Pretraining Model and Dataset

In this paper, we propose a Vision-Audio-Language Omni-peRception pretraining model (VALOR) for multi-modal understanding and generation. Different from widely-studied vision-language pretraining models, VALOR jointly models relationships of vision, audio and language in an end-to-end manner. It contains three separate encoders for single modality representations, and a decoder for multimodal conditional text generation. We design two pretext tasks to pretrain VALOR model, including Multimodal Grouping Alignment (MGA) and Multimodal Grouping Captioning (MGC). MGA projects vision, language and audio to the same common space, building vision-language, audio-language and audiovisual-language alignment simultaneously. MGC learns how to generate text tokens in conditions of vision, audio or their both. To promote vision-audio-language pretraining research, we construct a large-scale high-quality tri-modality dataset named VALOR-1M, which contains 1M audiable videos with human annotated audiovisual captions. Extensive experiments show that VALOR can learn strong multimodal correlations and be generalized to various downstream tasks (e.g., retrieval, captioning and question answering), with different input modalities (e.g., vision-language, audio-language and audiovisual-language). VALOR achieves new state-of-the-art performances on series of public cross-modality benchmarks. Code and data are available at project page https://casia-iva-group.github.io/projects/VALOR.

  • 7 authors
·
Apr 17, 2023

Attention is All You Need? Good Embeddings with Statistics are enough:Large Scale Audio Understanding without Transformers/ Convolutions/ BERTs/ Mixers/ Attention/ RNNs or ....

This paper presents a way of doing large scale audio understanding without traditional state of the art neural architectures. Ever since the introduction of deep learning for understanding audio signals in the past decade, convolutional architectures have been able to achieve state of the art results surpassing traditional hand-crafted features. In the recent past, there has been a similar shift away from traditional convolutional and recurrent neural networks towards purely end-to-end Transformer architectures. We, in this work, explore an approach, based on Bag-of-Words model. Our approach does not have any convolutions, recurrence, attention, transformers or other approaches such as BERT. We utilize micro and macro level clustered vanilla embeddings, and use a MLP head for classification. We only use feed-forward encoder-decoder models to get the bottlenecks of spectral envelops, spectral patches and slices as well as multi-resolution spectra. A classification head (a feed-forward layer), similar to the approach in SimCLR is trained on a learned representation. Using simple codes learned on latent representations, we show how we surpass traditional convolutional neural network architectures, and come strikingly close to outperforming powerful Transformer architectures. This work hopefully would pave way for exciting advancements in the field of representation learning without massive, end-to-end neural architectures.

  • 1 authors
·
Oct 7, 2021

SemantiCodec: An Ultra Low Bitrate Semantic Audio Codec for General Sound

Large language models (LLMs) have significantly advanced audio processing through audio codecs that convert audio into discrete tokens, enabling the application of language modelling techniques to audio data. However, traditional codecs often operate at high bitrates or within narrow domains such as speech and lack the semantic clues required for efficient language modelling. Addressing these challenges, we introduce SemantiCodec, a novel codec designed to compress audio into fewer than a hundred tokens per second across diverse audio types, including speech, general audio, and music, without compromising quality. SemantiCodec features a dual-encoder architecture: a semantic encoder using a self-supervised AudioMAE, discretized using k-means clustering on extensive audio data, and an acoustic encoder to capture the remaining details. The semantic and acoustic encoder outputs are used to reconstruct audio via a diffusion-model-based decoder. SemantiCodec is presented in three variants with token rates of 25, 50, and 100 per second, supporting a range of ultra-low bit rates between 0.31 kbps and 1.43 kbps. Experimental results demonstrate that SemantiCodec significantly outperforms the state-of-the-art Descript codec on reconstruction quality. Our results also suggest that SemantiCodec contains significantly richer semantic information than all evaluated audio codecs, even at significantly lower bitrates. Our code and demos are available at https://haoheliu.github.io/SemantiCodec/.

  • 6 authors
·
Apr 30, 2024 1

InteractiveOmni: A Unified Omni-modal Model for Audio-Visual Multi-turn Dialogue

We introduce InteractiveOmni, a unified and open-source omni-modal large language model for audio-visual multi-turn interaction, ranging from 4B to 8B parameters, designed to lead the field of lightweight models by offering comprehensive omni-modal understanding and speech generation capabilities. To achieve this, we integrate the vision encoder, audio encoder, large language model, and speech decoder into a unified model for understanding and generation tasks. We design a multi-stage training strategy to ensure robust cross-modal capabilities, including pre-training for omni-modal understanding, followed by post-training with speech conversation and audio-visual interaction. To enable human-like long-term conversational ability, we meticulously curate a multi-turn training dataset that enhances the model's ability to handle complex and multi-turn interactions. To effectively evaluate the multi-turn memory and speech interaction capabilities, we construct the multi-modal multi-turn memory benchmark and the multi-turn speech interaction benchmark. Experiments demonstrate that InteractiveOmni significantly outperforms leading open-source models and provides a more intelligent multi-turn audio-visual experience, particularly in its long-term memory capabilities. Notably, InteractiveOmni-4B is comparable to the much larger model like Qwen2.5-Omni-7B on general benchmarks, and it can retain 97% of the performance of the InteractiveOmni-8B while utilizing only 50% of the model size. Achieving state-of-the-art results against similarly sized models across image, audio, video understanding, and speech generation tasks, InteractiveOmni is an accessible, open-source foundation for next-generation intelligent interactive systems.

  • 26 authors
·
Oct 15, 2025 2

Killing two birds with one stone: Can an audio captioning system also be used for audio-text retrieval?

Automated Audio Captioning (AAC) aims to develop systems capable of describing an audio recording using a textual sentence. In contrast, Audio-Text Retrieval (ATR) systems seek to find the best matching audio recording(s) for a given textual query (Text-to-Audio) or vice versa (Audio-to-Text). These tasks require different types of systems: AAC employs a sequence-to-sequence model, while ATR utilizes a ranking model that compares audio and text representations within a shared projection subspace. However, this work investigates the relationship between AAC and ATR by exploring the ATR capabilities of an unmodified AAC system, without fine-tuning for the new task. Our AAC system consists of an audio encoder (ConvNeXt-Tiny) trained on AudioSet for audio tagging, and a transformer decoder responsible for generating sentences. For AAC, it achieves a high SPIDEr-FL score of 0.298 on Clotho and 0.472 on AudioCaps on average. For ATR, we propose using the standard Cross-Entropy loss values obtained for any audio/caption pair. Experimental results on the Clotho and AudioCaps datasets demonstrate decent recall values using this simple approach. For instance, we obtained a Text-to-Audio R@1 value of 0.382 for Au-dioCaps, which is above the current state-of-the-art method without external data. Interestingly, we observe that normalizing the loss values was necessary for Audio-to-Text retrieval.

  • 3 authors
·
Aug 29, 2023

CodecFake+: A Large-Scale Neural Audio Codec-Based Deepfake Speech Dataset

With the rapid advancement of neural audio codecs, codec-based speech generation (CoSG) systems have become highly powerful. Unfortunately, CoSG also enables the creation of highly realistic deepfake speech, making it easier to mimic an individual's voice and spread misinformation. We refer to this emerging deepfake speech generated by CoSG systems as CodecFake. Detecting such CodecFake is an urgent challenge, yet most existing systems primarily focus on detecting fake speech generated by traditional speech synthesis models. In this paper, we introduce CodecFake+, a large-scale dataset designed to advance CodecFake detection. To our knowledge, CodecFake+ is the largest dataset encompassing the most diverse range of codec architectures. The training set is generated through re-synthesis using 31 publicly available open-source codec models, while the evaluation set includes web-sourced data from 17 advanced CoSG models. We also propose a comprehensive taxonomy that categorizes codecs by their root components: vector quantizer, auxiliary objectives, and decoder types. Our proposed dataset and taxonomy enable detailed analysis at multiple levels to discern the key factors for successful CodecFake detection. At the individual codec level, we validate the effectiveness of using codec re-synthesized speech (CoRS) as training data for large-scale CodecFake detection. At the taxonomy level, we show that detection performance is strongest when the re-synthesis model incorporates disentanglement auxiliary objectives or a frequency-domain decoder. Furthermore, from the perspective of using all the CoRS training data, we show that our proposed taxonomy can be used to select better training data for improving detection performance. Overall, we envision that CodecFake+ will be a valuable resource for both general and fine-grained exploration to develop better anti-spoofing models against CodecFake.

  • 11 authors
·
Jan 14, 2025

PROFASR-BENCH: A Benchmark for Context-Conditioned ASR in High-Stakes Professional Speech

Automatic Speech Recognition (ASR) in professional settings faces challenges that existing benchmarks underplay: dense domain terminology, formal register variation, and near-zero tolerance for critical entity errors. We present ProfASR-Bench, a professional-talk evaluation suite for high-stakes applications across finance, medicine, legal, and technology. Each example pairs a natural-language prompt (domain cue and/or speaker profile) with an entity-rich target utterance, enabling controlled measurement of context-conditioned recognition. The corpus supports conventional ASR metrics alongside entity-aware scores and slice-wise reporting by accent and gender. Using representative families Whisper (encoder-decoder ASR) and Qwen-Omni (audio language models) under matched no-context, profile, domain+profile, oracle, and adversarial conditions, we find a consistent pattern: lightweight textual context produces little to no change in average word error rate (WER), even with oracle prompts, and adversarial prompts do not reliably degrade performance. We term this the context-utilization gap (CUG): current systems are nominally promptable yet underuse readily available side information. ProfASR-Bench provides a standardized context ladder, entity- and slice-aware reporting with confidence intervals, and a reproducible testbed for comparing fusion strategies across model families. Dataset: https://huggingface.co/datasets/prdeepakbabu/ProfASR-Bench Code: https://github.com/prdeepakbabu/ProfASR-Bench

  • 1 authors
·
Dec 29, 2025

QuarkAudio Technical Report

Many existing audio processing and generation models rely on task-specific architectures, resulting in fragmented development efforts and limited extensibility. It is therefore promising to design a unified framework capable of handling multiple tasks, while providing robust instruction and audio understanding and high-quality audio generation. This requires a compatible paradigm design, a powerful backbone, and a high-fidelity audio reconstruction module. To meet these requirements, this technical report introduces QuarkAudio, a decoder-only autoregressive (AR) LM-based generative framework that unifies multiple tasks. The framework includes a unified discrete audio tokenizer, H-Codec, which incorporates self-supervised learning (SSL) representations into the tokenization and reconstruction process. We further propose several improvements to H-Codec, such as a dynamic frame-rate mechanism and extending the audio sampling rate to 48 kHz. QuarkAudio unifies tasks by using task-specific conditional information as the conditioning sequence of the decoder-only LM, and predicting discrete target audio tokens in an AR manner. The framework supports a wide range of audio processing and generation tasks, including speech restoration (SR), target speaker extraction (TSE), speech separation (SS), voice conversion (VC), and language-queried audio source separation (LASS). In addition, we extend downstream tasks to universal free-form audio editing guided by natural language instructions (including speech semantic editing and audio event editing). Experimental results show that H-Codec achieves high-quality audio reconstruction with a low frame rate, improving both the efficiency and performance of downstream audio generation, and that QuarkAudio delivers competitive or comparable performance to state-of-the-art task-specific or multi-task systems across multiple tasks.

  • 8 authors
·
Dec 23, 2025

Language Model Can Listen While Speaking

Dialogue serves as the most natural manner of human-computer interaction (HCI). Recent advancements in speech language models (SLM) have significantly enhanced speech-based conversational AI. However, these models are limited to turn-based conversation, lacking the ability to interact with humans in real-time spoken scenarios, for example, being interrupted when the generated content is not satisfactory. To address these limitations, we explore full duplex modeling (FDM) in interactive speech language models (iSLM), focusing on enhancing real-time interaction and, more explicitly, exploring the quintessential ability of interruption. We introduce a novel model design, namely listening-while-speaking language model (LSLM), an end-to-end system equipped with both listening and speaking channels. Our LSLM employs a token-based decoder-only TTS for speech generation and a streaming self-supervised learning (SSL) encoder for real-time audio input. LSLM fuses both channels for autoregressive generation and detects turn-taking in real time. Three fusion strategies -- early fusion, middle fusion, and late fusion -- are explored, with middle fusion achieving an optimal balance between speech generation and real-time interaction. Two experimental settings, command-based FDM and voice-based FDM, demonstrate LSLM's robustness to noise and sensitivity to diverse instructions. Our results highlight LSLM's capability to achieve duplex communication with minimal impact on existing systems. This study aims to advance the development of interactive speech dialogue systems, enhancing their applicability in real-world contexts.

  • 8 authors
·
Aug 5, 2024 6

Autoregressive Diffusion Transformer for Text-to-Speech Synthesis

Audio language models have recently emerged as a promising approach for various audio generation tasks, relying on audio tokenizers to encode waveforms into sequences of discrete symbols. Audio tokenization often poses a necessary compromise between code bitrate and reconstruction accuracy. When dealing with low-bitrate audio codes, language models are constrained to process only a subset of the information embedded in the audio, which in turn restricts their generative capabilities. To circumvent these issues, we propose encoding audio as vector sequences in continuous space mathbb R^d and autoregressively generating these sequences using a decoder-only diffusion transformer (ARDiT). Our findings indicate that ARDiT excels in zero-shot text-to-speech and exhibits performance that compares to or even surpasses that of state-of-the-art models. High-bitrate continuous speech representation enables almost flawless reconstruction, allowing our model to achieve nearly perfect speech editing. Our experiments reveal that employing Integral Kullback-Leibler (IKL) divergence for distillation at each autoregressive step significantly boosts the perceived quality of the samples. Simultaneously, it condenses the iterative sampling process of the diffusion model into a single step. Furthermore, ARDiT can be trained to predict several continuous vectors in one step, significantly reducing latency during sampling. Impressively, one of our models can generate 170 ms of 24 kHz speech per evaluation step with minimal degradation in performance. Audio samples are available at http://ardit-tts.github.io/ .

  • 5 authors
·
Jun 8, 2024

Constructing a Singing Style Caption Dataset

Singing voice synthesis and conversion have emerged as significant subdomains of voice generation, leading to much demands on prompt-conditioned generation. Unlike common voice data, generating a singing voice requires an understanding of various associated vocal and musical characteristics, such as the vocal tone of the singer or emotional expressions. However, existing open-source audio-text datasets for voice generation tend to capture only a very limited range of attributes, often missing musical characteristics of the audio. To fill this gap, we introduce S2Cap, an audio-text pair dataset with a diverse set of attributes. S2Cap consists of pairs of textual prompts and music audio samples with a wide range of vocal and musical attributes, including pitch, volume, tempo, mood, singer's gender and age, and musical genre and emotional expression. Utilizing S2Cap, we suggest an effective novel baseline algorithm for singing style captioning. Singing style captioning is a relative task to voice generation that generates text descriptions of vocal characteristics, which we first suggested. First, to mitigate the misalignment between the audio encoder and the text decoder, we present a novel mechanism called CRESCENDO, which utilizes positive-pair similarity learning to synchronize the embedding spaces of a pretrained audio encoder to get similar embeddings with a text encoder. We additionally supervise the model using the singer's voice, which is demixed by the accompaniment. This supervision allows the model to more accurately capture vocal characteristics, leading to improved singing style captions that better reflect the style of the singer. The dataset and the codes are available at https://github.com/HJ-Ok/S2cap.

  • 2 authors
·
Sep 15, 2024

StyleTalk: One-shot Talking Head Generation with Controllable Speaking Styles

Different people speak with diverse personalized speaking styles. Although existing one-shot talking head methods have made significant progress in lip sync, natural facial expressions, and stable head motions, they still cannot generate diverse speaking styles in the final talking head videos. To tackle this problem, we propose a one-shot style-controllable talking face generation framework. In a nutshell, we aim to attain a speaking style from an arbitrary reference speaking video and then drive the one-shot portrait to speak with the reference speaking style and another piece of audio. Specifically, we first develop a style encoder to extract dynamic facial motion patterns of a style reference video and then encode them into a style code. Afterward, we introduce a style-controllable decoder to synthesize stylized facial animations from the speech content and style code. In order to integrate the reference speaking style into generated videos, we design a style-aware adaptive transformer, which enables the encoded style code to adjust the weights of the feed-forward layers accordingly. Thanks to the style-aware adaptation mechanism, the reference speaking style can be better embedded into synthesized videos during decoding. Extensive experiments demonstrate that our method is capable of generating talking head videos with diverse speaking styles from only one portrait image and an audio clip while achieving authentic visual effects. Project Page: https://github.com/FuxiVirtualHuman/styletalk.

  • 8 authors
·
Jan 3, 2023

InstructAny2Pix: Flexible Visual Editing via Multimodal Instruction Following

The ability to provide fine-grained control for generating and editing visual imagery has profound implications for computer vision and its applications. Previous works have explored extending controllability in two directions: instruction tuning with text-based prompts and multi-modal conditioning. However, these works make one or more unnatural assumptions on the number and/or type of modality inputs used to express controllability. We propose InstructAny2Pix, a flexible multi-modal instruction-following system that enables users to edit an input image using instructions involving audio, images, and text. InstructAny2Pix consists of three building blocks that facilitate this capability: a multi-modal encoder that encodes different modalities such as images and audio into a unified latent space, a diffusion model that learns to decode representations in this latent space into images, and a multi-modal LLM that can understand instructions involving multiple images and audio pieces and generate a conditional embedding of the desired output, which can be used by the diffusion decoder. Additionally, to facilitate training efficiency and improve generation quality, we include an additional refinement prior module that enhances the visual quality of LLM outputs. These designs are critical to the performance of our system. We demonstrate that our system can perform a series of novel instruction-guided editing tasks. The code is available at https://github.com/jacklishufan/InstructAny2Pix.git

  • 3 authors
·
Dec 11, 2023

Continuous Speech Tokens Makes LLMs Robust Multi-Modality Learners

Recent advances in GPT-4o like multi-modality models have demonstrated remarkable progress for direct speech-to-speech conversation, with real-time speech interaction experience and strong speech understanding ability. However, current research focuses on discrete speech tokens to align with discrete text tokens for language modelling, which depends on an audio codec with residual connections or independent group tokens, such a codec usually leverages large scale and diverse datasets training to ensure that the discrete speech codes have good representation for varied domain, noise, style data reconstruction as well as a well-designed codec quantizer and encoder-decoder architecture for discrete token language modelling. This paper introduces Flow-Omni, a continuous speech token based GPT-4o like model, capable of real-time speech interaction and low streaming latency. Specifically, first, instead of cross-entropy loss only, we combine flow matching loss with a pretrained autoregressive LLM and a small MLP network to predict the probability distribution of the continuous-valued speech tokens from speech prompt. second, we incorporated the continuous speech tokens to Flow-Omni multi-modality training, thereby achieving robust speech-to-speech performance with discrete text tokens and continuous speech tokens together. Experiments demonstrate that, compared to discrete text and speech multi-modality training and its variants, the continuous speech tokens mitigate robustness issues by avoiding the inherent flaws of discrete speech code's representation loss for LLM.

  • 4 authors
·
Dec 6, 2024