Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSEMICON: A Learning-to-hash Solution for Large-scale Fine-grained Image Retrieval
In this paper, we propose Suppression-Enhancing Mask based attention and Interactive Channel transformatiON (SEMICON) to learn binary hash codes for dealing with large-scale fine-grained image retrieval tasks. In SEMICON, we first develop a suppression-enhancing mask (SEM) based attention to dynamically localize discriminative image regions. More importantly, different from existing attention mechanism simply erasing previous discriminative regions, our SEM is developed to restrain such regions and then discover other complementary regions by considering the relation between activated regions in a stage-by-stage fashion. In each stage, the interactive channel transformation (ICON) module is afterwards designed to exploit correlations across channels of attended activation tensors. Since channels could generally correspond to the parts of fine-grained objects, the part correlation can be also modeled accordingly, which further improves fine-grained retrieval accuracy. Moreover, to be computational economy, ICON is realized by an efficient two-step process. Finally, the hash learning of our SEMICON consists of both global- and local-level branches for better representing fine-grained objects and then generating binary hash codes explicitly corresponding to multiple levels. Experiments on five benchmark fine-grained datasets show our superiority over competing methods.
One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective
A deep hashing model typically has two main learning objectives: to make the learned binary hash codes discriminative and to minimize a quantization error. With further constraints such as bit balance and code orthogonality, it is not uncommon for existing models to employ a large number (>4) of losses. This leads to difficulties in model training and subsequently impedes their effectiveness. In this work, we propose a novel deep hashing model with only a single learning objective. Specifically, we show that maximizing the cosine similarity between the continuous codes and their corresponding binary orthogonal codes can ensure both hash code discriminativeness and quantization error minimization. Further, with this learning objective, code balancing can be achieved by simply using a Batch Normalization (BN) layer and multi-label classification is also straightforward with label smoothing. The result is an one-loss deep hashing model that removes all the hassles of tuning the weights of various losses. Importantly, extensive experiments show that our model is highly effective, outperforming the state-of-the-art multi-loss hashing models on three large-scale instance retrieval benchmarks, often by significant margins. Code is available at https://github.com/kamwoh/orthohash
Unsupervised Hashing with Similarity Distribution Calibration
Unsupervised hashing methods typically aim to preserve the similarity between data points in a feature space by mapping them to binary hash codes. However, these methods often overlook the fact that the similarity between data points in the continuous feature space may not be preserved in the discrete hash code space, due to the limited similarity range of hash codes. The similarity range is bounded by the code length and can lead to a problem known as similarity collapse. That is, the positive and negative pairs of data points become less distinguishable from each other in the hash space. To alleviate this problem, in this paper a novel Similarity Distribution Calibration (SDC) method is introduced. SDC aligns the hash code similarity distribution towards a calibration distribution (e.g., beta distribution) with sufficient spread across the entire similarity range, thus alleviating the similarity collapse problem. Extensive experiments show that our SDC outperforms significantly the state-of-the-art alternatives on coarse category-level and instance-level image retrieval. Code is available at https://github.com/kamwoh/sdc.
Efficient Passage Retrieval with Hashing for Open-domain Question Answering
Most state-of-the-art open-domain question answering systems use a neural retrieval model to encode passages into continuous vectors and extract them from a knowledge source. However, such retrieval models often require large memory to run because of the massive size of their passage index. In this paper, we introduce Binary Passage Retriever (BPR), a memory-efficient neural retrieval model that integrates a learning-to-hash technique into the state-of-the-art Dense Passage Retriever (DPR) to represent the passage index using compact binary codes rather than continuous vectors. BPR is trained with a multi-task objective over two tasks: efficient candidate generation based on binary codes and accurate reranking based on continuous vectors. Compared with DPR, BPR substantially reduces the memory cost from 65GB to 2GB without a loss of accuracy on two standard open-domain question answering benchmarks: Natural Questions and TriviaQA. Our code and trained models are available at https://github.com/studio-ousia/bpr.
byteSteady: Fast Classification Using Byte-Level n-Gram Embeddings
This article introduces byteSteady -- a fast model for classification using byte-level n-gram embeddings. byteSteady assumes that each input comes as a sequence of bytes. A representation vector is produced using the averaged embedding vectors of byte-level n-grams, with a pre-defined set of n. The hashing trick is used to reduce the number of embedding vectors. This input representation vector is then fed into a linear classifier. A straightforward application of byteSteady is text classification. We also apply byteSteady to one type of non-language data -- DNA sequences for gene classification. For both problems we achieved competitive classification results against strong baselines, suggesting that byteSteady can be applied to both language and non-language data. Furthermore, we find that simple compression using Huffman coding does not significantly impact the results, which offers an accuracy-speed trade-off previously unexplored in machine learning.
To be Continuous, or to be Discrete, Those are Bits of Questions
Recently, binary representation has been proposed as a novel representation that lies between continuous and discrete representations. It exhibits considerable information-preserving capability when being used to replace continuous input vectors. In this paper, we investigate the feasibility of further introducing it to the output side, aiming to allow models to output binary labels instead. To preserve the structural information on the output side along with label information, we extend the previous contrastive hashing method as structured contrastive hashing. More specifically, we upgrade CKY from label-level to bit-level, define a new similarity function with span marginal probabilities, and introduce a novel contrastive loss function with a carefully designed instance selection strategy. Our model achieves competitive performance on various structured prediction tasks, and demonstrates that binary representation can be considered a novel representation that further bridges the gap between the continuous nature of deep learning and the discrete intrinsic property of natural languages.
Optimal Densification for Fast and Accurate Minwise Hashing
Minwise hashing is a fundamental and one of the most successful hashing algorithm in the literature. Recent advances based on the idea of densification~Proc:OneHashLSH_ICML14,Proc:Shrivastava_UAI14 have shown that it is possible to compute k minwise hashes, of a vector with d nonzeros, in mere (d + k) computations, a significant improvement over the classical O(dk). These advances have led to an algorithmic improvement in the query complexity of traditional indexing algorithms based on minwise hashing. Unfortunately, the variance of the current densification techniques is unnecessarily high, which leads to significantly poor accuracy compared to vanilla minwise hashing, especially when the data is sparse. In this paper, we provide a novel densification scheme which relies on carefully tailored 2-universal hashes. We show that the proposed scheme is variance-optimal, and without losing the runtime efficiency, it is significantly more accurate than existing densification techniques. As a result, we obtain a significantly efficient hashing scheme which has the same variance and collision probability as minwise hashing. Experimental evaluations on real sparse and high-dimensional datasets validate our claims. We believe that given the significant advantages, our method will replace minwise hashing implementations in practice.
Deep Multi-View Enhancement Hashing for Image Retrieval
Hashing is an efficient method for nearest neighbor search in large-scale data space by embedding high-dimensional feature descriptors into a similarity preserving Hamming space with a low dimension. However, large-scale high-speed retrieval through binary code has a certain degree of reduction in retrieval accuracy compared to traditional retrieval methods. We have noticed that multi-view methods can well preserve the diverse characteristics of data. Therefore, we try to introduce the multi-view deep neural network into the hash learning field, and design an efficient and innovative retrieval model, which has achieved a significant improvement in retrieval performance. In this paper, we propose a supervised multi-view hash model which can enhance the multi-view information through neural networks. This is a completely new hash learning method that combines multi-view and deep learning methods. The proposed method utilizes an effective view stability evaluation method to actively explore the relationship among views, which will affect the optimization direction of the entire network. We have also designed a variety of multi-data fusion methods in the Hamming space to preserve the advantages of both convolution and multi-view. In order to avoid excessive computing resources on the enhancement procedure during retrieval, we set up a separate structure called memory network which participates in training together. The proposed method is systematically evaluated on the CIFAR-10, NUS-WIDE and MS-COCO datasets, and the results show that our method significantly outperforms the state-of-the-art single-view and multi-view hashing methods.
Prototype-supervised Adversarial Network for Targeted Attack of Deep Hashing
Due to its powerful capability of representation learning and high-efficiency computation, deep hashing has made significant progress in large-scale image retrieval. However, deep hashing networks are vulnerable to adversarial examples, which is a practical secure problem but seldom studied in hashing-based retrieval field. In this paper, we propose a novel prototype-supervised adversarial network (ProS-GAN), which formulates a flexible generative architecture for efficient and effective targeted hashing attack. To the best of our knowledge, this is the first generation-based method to attack deep hashing networks. Generally, our proposed framework consists of three parts, i.e., a PrototypeNet, a generator, and a discriminator. Specifically, the designed PrototypeNet embeds the target label into the semantic representation and learns the prototype code as the category-level representative of the target label. Moreover, the semantic representation and the original image are jointly fed into the generator for a flexible targeted attack. Particularly, the prototype code is adopted to supervise the generator to construct the targeted adversarial example by minimizing the Hamming distance between the hash code of the adversarial example and the prototype code. Furthermore, the generator is against the discriminator to simultaneously encourage the adversarial examples visually realistic and the semantic representation informative. Extensive experiments verify that the proposed framework can efficiently produce adversarial examples with better targeted attack performance and transferability over state-of-the-art targeted attack methods of deep hashing. The related codes could be available at https://github.com/xunguangwang/ProS-GAN .
Feature Learning based Deep Supervised Hashing with Pairwise Labels
Recent years have witnessed wide application of hashing for large-scale image retrieval. However, most existing hashing methods are based on hand-crafted features which might not be optimally compatible with the hashing procedure. Recently, deep hashing methods have been proposed to perform simultaneous feature learning and hash-code learning with deep neural networks, which have shown better performance than traditional hashing methods with hand-crafted features. Most of these deep hashing methods are supervised whose supervised information is given with triplet labels. For another common application scenario with pairwise labels, there have not existed methods for simultaneous feature learning and hash-code learning. In this paper, we propose a novel deep hashing method, called deep pairwise-supervised hashing(DPSH), to perform simultaneous feature learning and hash-code learning for applications with pairwise labels. Experiments on real datasets show that our DPSH method can outperform other methods to achieve the state-of-the-art performance in image retrieval applications.
Optimal Bounds for Open Addressing Without Reordering
In this paper, we revisit one of the simplest problems in data structures: the task of inserting elements into an open-addressed hash table so that elements can later be retrieved with as few probes as possible. We show that, even without reordering elements over time, it is possible to construct a hash table that achieves far better expected search complexities (both amortized and worst-case) than were previously thought possible. Along the way, we disprove the central conjecture left by Yao in his seminal paper ``Uniform Hashing is Optimal''. All of our results come with matching lower bounds.
Injecting Domain Adaptation with Learning-to-hash for Effective and Efficient Zero-shot Dense Retrieval
Dense retrieval overcome the lexical gap and has shown great success in ad-hoc information retrieval (IR). Despite their success, dense retrievers are expensive to serve across practical use cases. For use cases requiring to search from millions of documents, the dense index becomes bulky and requires high memory usage for storing the index. More recently, learning-to-hash (LTH) techniques, for e.g., BPR and JPQ, produce binary document vectors, thereby reducing the memory requirement to efficiently store the dense index. LTH techniques are supervised and finetune the retriever using a ranking loss. They outperform their counterparts, i.e., traditional out-of-the-box vector compression techniques such as PCA or PQ. A missing piece from prior work is that existing techniques have been evaluated only in-domain, i.e., on a single dataset such as MS MARCO. In our work, we evaluate LTH and vector compression techniques for improving the downstream zero-shot retrieval accuracy of the TAS-B dense retriever while maintaining efficiency at inference. Our results demonstrate that, unlike prior work, LTH strategies when applied naively can underperform the zero-shot TAS-B dense retriever on average by up to 14% nDCG@10 on the BEIR benchmark. To solve this limitation, in our work, we propose an easy yet effective solution of injecting domain adaptation with existing supervised LTH techniques. We experiment with two well-known unsupervised domain adaptation techniques: GenQ and GPL. Our domain adaptation injection technique can improve the downstream zero-shot retrieval effectiveness for both BPR and JPQ variants of the TAS-B model by on average 11.5% and 8.2% nDCG@10 while both maintaining 32times memory efficiency and 14times and 2times speedup respectively in CPU retrieval latency on BEIR. All our code, models, and data are publicly available at https://github.com/thakur-nandan/income.
Unified Functional Hashing in Automatic Machine Learning
The field of Automatic Machine Learning (AutoML) has recently attained impressive results, including the discovery of state-of-the-art machine learning solutions, such as neural image classifiers. This is often done by applying an evolutionary search method, which samples multiple candidate solutions from a large space and evaluates the quality of each candidate through a long training process. As a result, the search tends to be slow. In this paper, we show that large efficiency gains can be obtained by employing a fast unified functional hash, especially through the functional equivalence caching technique, which we also present. The central idea is to detect by hashing when the search method produces equivalent candidates, which occurs very frequently, and this way avoid their costly re-evaluation. Our hash is "functional" in that it identifies equivalent candidates even if they were represented or coded differently, and it is "unified" in that the same algorithm can hash arbitrary representations; e.g. compute graphs, imperative code, or lambda functions. As evidence, we show dramatic improvements on multiple AutoML domains, including neural architecture search and algorithm discovery. Finally, we consider the effect of hash collisions, evaluation noise, and search distribution through empirical analysis. Altogether, we hope this paper may serve as a guide to hashing techniques in AutoML.
Cross-Scale Context Extracted Hashing for Fine-Grained Image Binary Encoding
Deep hashing has been widely applied to large-scale image retrieval tasks owing to efficient computation and low storage cost by encoding high-dimensional image data into binary codes. Since binary codes do not contain as much information as float features, the essence of binary encoding is preserving the main context to guarantee retrieval quality. However, the existing hashing methods have great limitations on suppressing redundant background information and accurately encoding from Euclidean space to Hamming space by a simple sign function. In order to solve these problems, a Cross-Scale Context Extracted Hashing Network (CSCE-Net) is proposed in this paper. Firstly, we design a two-branch framework to capture fine-grained local information while maintaining high-level global semantic information. Besides, Attention guided Information Extraction module (AIE) is introduced between two branches, which suppresses areas of low context information cooperated with global sliding windows. Unlike previous methods, our CSCE-Net learns a content-related Dynamic Sign Function (DSF) to replace the original simple sign function. Therefore, the proposed CSCE-Net is context-sensitive and able to perform well on accurate image binary encoding. We further demonstrate that our CSCE-Net is superior to the existing hashing methods, which improves retrieval performance on standard benchmarks.
Assemblage: Automatic Binary Dataset Construction for Machine Learning
Binary code is pervasive, and binary analysis is a key task in reverse engineering, malware classification, and vulnerability discovery. Unfortunately, while there exist large corpuses of malicious binaries, obtaining high-quality corpuses of benign binaries for modern systems has proven challenging (e.g., due to licensing issues). Consequently, machine learning based pipelines for binary analysis utilize either costly commercial corpuses (e.g., VirusTotal) or open-source binaries (e.g., coreutils) available in limited quantities. To address these issues, we present Assemblage: an extensible cloud-based distributed system that crawls, configures, and builds Windows PE binaries to obtain high-quality binary corpuses suitable for training state-of-the-art models in binary analysis. We have run Assemblage on AWS over the past year, producing 890k Windows PE and 428k Linux ELF binaries across 29 configurations. Assemblage is designed to be both reproducible and extensible, enabling users to publish "recipes" for their datasets, and facilitating the extraction of a wide array of features. We evaluated Assemblage by using its data to train modern learning-based pipelines for compiler provenance and binary function similarity. Our results illustrate the practical need for robust corpuses of high-quality Windows PE binaries in training modern learning-based binary analyses. Assemblage can be downloaded from https://assemblage-dataset.net
Proving membership in LLM pretraining data via data watermarks
Detecting whether copyright holders' works were used in LLM pretraining is poised to be an important problem. This work proposes using data watermarks to enable principled detection with only black-box model access, provided that the rightholder contributed multiple training documents and watermarked them before public release. By applying a randomly sampled data watermark, detection can be framed as hypothesis testing, which provides guarantees on the false detection rate. We study two watermarks: one that inserts random sequences, and another that randomly substitutes characters with Unicode lookalikes. We first show how three aspects of watermark design -- watermark length, number of duplications, and interference -- affect the power of the hypothesis test. Next, we study how a watermark's detection strength changes under model and dataset scaling: while increasing the dataset size decreases the strength of the watermark, watermarks remain strong if the model size also increases. Finally, we view SHA hashes as natural watermarks and show that we can robustly detect hashes from BLOOM-176B's training data, as long as they occurred at least 90 times. Together, our results point towards a promising future for data watermarks in real world use.
Faster Algorithms for Text-to-Pattern Hamming Distances
We study the classic Text-to-Pattern Hamming Distances problem: given a pattern P of length m and a text T of length n, both over a polynomial-size alphabet, compute the Hamming distance between P and T[i, ., . , i+m-1] for every shift i, under the standard Word-RAM model with Theta(log n)-bit words. - We provide an O(nm) time Las Vegas randomized algorithm for this problem, beating the decades-old O(n m log m) running time [Abrahamson, SICOMP 1987]. We also obtain a deterministic algorithm, with a slightly higher O(nm(log mloglog m)^{1/4}) running time. Our randomized algorithm extends to the k-bounded setting, with running time Obig(n+nk{m}big), removing all the extra logarithmic factors from earlier algorithms [Gawrychowski and Uzna\'{n}ski, ICALP 2018; Chan, Golan, Kociumaka, Kopelowitz and Porat, STOC 2020]. - For the (1+epsilon)-approximate version of Text-to-Pattern Hamming Distances, we give an O(epsilon^{-0.93}n) time Monte Carlo randomized algorithm, beating the previous O(epsilon^{-1}n) running time [Kopelowitz and Porat, FOCS 2015; Kopelowitz and Porat, SOSA 2018]. Our approximation algorithm exploits a connection with 3SUM, and uses a combination of Fredman's trick, equality matrix product, and random sampling; in particular, we obtain new results on approximate counting versions of 3SUM and Exact Triangle, which may be of independent interest. Our exact algorithms use a novel combination of hashing, bit-packed FFT, and recursion; in particular, we obtain a faster algorithm for computing the sumset of two integer sets, in the regime when the universe size is close to quadratic in the number of elements. We also prove a fine-grained equivalence between the exact Text-to-Pattern Hamming Distances problem and a range-restricted, counting version of 3SUM.
How Far Have We Gone in Stripped Binary Code Understanding Using Large Language Models
Binary code analysis plays a pivotal role in various software security applications, such as software maintenance, malware detection, software vulnerability discovery, patch analysis, etc. However, unlike source code, understanding binary code is challenging for reverse engineers due to the absence of semantic information. Therefore, automated tools are needed to assist human players in interpreting binary code. In recent years, two groups of technologies have shown promising prospects: (1) Deep learning-based technologies have demonstrated competitive results in tasks related to binary code understanding, furthermore, (2) Large Language Models (LLMs) have been extensively pre-trained at the source-code level for tasks such as code understanding and generation. This makes participants wonder about the ability of LLMs in binary code understanding. In this work, we propose a benchmark to evaluate the effectiveness of LLMs in real-world reverse engineering scenarios. The benchmark covers two key binary code understanding tasks, including function name recovery and binary code summarization. We gain valuable insights into their capabilities and limitations through extensive evaluations of popular LLMs using our benchmark. Our evaluations reveal that existing LLMs can understand binary code to a certain extent, thereby improving the efficiency of binary code analysis. Our results highlight the great potential of the LLMs in advancing the field of binary code understanding.
Neural Locality Sensitive Hashing for Entity Blocking
Locality-sensitive hashing (LSH) is a fundamental algorithmic technique widely employed in large-scale data processing applications, such as nearest-neighbor search, entity resolution, and clustering. However, its applicability in some real-world scenarios is limited due to the need for careful design of hashing functions that align with specific metrics. Existing LSH-based Entity Blocking solutions primarily rely on generic similarity metrics such as Jaccard similarity, whereas practical use cases often demand complex and customized similarity rules surpassing the capabilities of generic similarity metrics. Consequently, designing LSH functions for these customized similarity rules presents considerable challenges. In this research, we propose a neuralization approach to enhance locality-sensitive hashing by training deep neural networks to serve as hashing functions for complex metrics. We assess the effectiveness of this approach within the context of the entity resolution problem, which frequently involves the use of task-specific metrics in real-world applications. Specifically, we introduce NLSHBlock (Neural-LSH Block), a novel blocking methodology that leverages pre-trained language models, fine-tuned with a novel LSH-based loss function. Through extensive evaluations conducted on a diverse range of real-world datasets, we demonstrate the superiority of NLSHBlock over existing methods, exhibiting significant performance improvements. Furthermore, we showcase the efficacy of NLSHBlock in enhancing the performance of the entity matching phase, particularly within the semi-supervised setting.
Hashed Watermark as a Filter: Defeating Forging and Overwriting Attacks in Weight-based Neural Network Watermarking
As valuable digital assets, deep neural networks necessitate robust ownership protection, positioning neural network watermarking (NNW) as a promising solution. Among various NNW approaches, weight-based methods are favored for their simplicity and practicality; however, they remain vulnerable to forging and overwriting attacks. To address those challenges, we propose NeuralMark, a robust method built around a hashed watermark filter. Specifically, we utilize a hash function to generate an irreversible binary watermark from a secret key, which is then used as a filter to select the model parameters for embedding. This design cleverly intertwines the embedding parameters with the hashed watermark, providing a robust defense against both forging and overwriting attacks. An average pooling is also incorporated to resist fine-tuning and pruning attacks. Furthermore, it can be seamlessly integrated into various neural network architectures, ensuring broad applicability. Theoretically, we analyze its security boundary. Empirically, we verify its effectiveness and robustness across 13 distinct Convolutional and Transformer architectures, covering five image classification tasks and one text generation task. The source codes are available at https://github.com/AIResearch-Group/NeuralMark.
Bit-wise Training of Neural Network Weights
We introduce an algorithm where the individual bits representing the weights of a neural network are learned. This method allows training weights with integer values on arbitrary bit-depths and naturally uncovers sparse networks, without additional constraints or regularization techniques. We show better results than the standard training technique with fully connected networks and similar performance as compared to standard training for convolutional and residual networks. By training bits in a selective manner we found that the biggest contribution to achieving high accuracy is given by the first three most significant bits, while the rest provide an intrinsic regularization. As a consequence more than 90\% of a network can be used to store arbitrary codes without affecting its accuracy. These codes may be random noise, binary files or even the weights of previously trained networks.
Homomorphic Encryption: Theory & Applications
The goal of this chapter is to present a survey of homomorphic encryption techniques and their applications. After a detailed discussion on the introduction and motivation of the chapter, we present some basic concepts of cryptography. The fundamental theories of homomorphic encryption are then discussed with suitable examples. The chapter then provides a survey of some of the classical homomorphic encryption schemes existing in the current literature. Various applications and salient properties of homomorphic encryption schemes are then discussed in detail. The chapter then introduces the most important and recent research direction in the filed - fully homomorphic encryption. A significant number of propositions on fully homomorphic encryption is then discussed. Finally, the chapter concludes by outlining some emerging research trends in this exicting field of cryptography.
Fast Similarity Sketching
We consider the Similarity Sketching problem: Given a universe [u] = {0,ldots, u-1} we want a random function S mapping subsets Asubseteq [u] into vectors S(A) of size t, such that the Jaccard similarity J(A,B) = |Acap B|/|Acup B| between sets A and B is preserved. More precisely, define X_i = [S(A)[i] = S(B)[i]] and X = sum_{iin [t]} X_i. We want E[X_i]=J(A,B), and we want X to be strongly concentrated around E[X] = t cdot J(A,B) (i.e. Chernoff-style bounds). This is a fundamental problem which has found numerous applications in data mining, large-scale classification, computer vision, similarity search, etc. via the classic MinHash algorithm. The vectors S(A) are also called sketches. Strong concentration is critical, for often we want to sketch many sets B_1,ldots,B_n so that we later, for a query set A, can find (one of) the most similar B_i. It is then critical that no B_i looks much more similar to A due to errors in the sketch. The seminal ttimesMinHash algorithm uses t random hash functions h_1,ldots, h_t, and stores left ( min_{ain A} h_1(A),ldots, min_{ain A} h_t(A) right ) as the sketch of A. The main drawback of MinHash is, however, its O(tcdot |A|) running time, and finding a sketch with similar properties and faster running time has been the subject of several papers. (continued...)
Binary Embedding-based Retrieval at Tencent
Large-scale embedding-based retrieval (EBR) is the cornerstone of search-related industrial applications. Given a user query, the system of EBR aims to identify relevant information from a large corpus of documents that may be tens or hundreds of billions in size. The storage and computation turn out to be expensive and inefficient with massive documents and high concurrent queries, making it difficult to further scale up. To tackle the challenge, we propose a binary embedding-based retrieval (BEBR) engine equipped with a recurrent binarization algorithm that enables customized bits per dimension. Specifically, we compress the full-precision query and document embeddings, formulated as float vectors in general, into a composition of multiple binary vectors using a lightweight transformation model with residual multilayer perception (MLP) blocks. We can therefore tailor the number of bits for different applications to trade off accuracy loss and cost savings. Importantly, we enable task-agnostic efficient training of the binarization model using a new embedding-to-embedding strategy. We also exploit the compatible training of binary embeddings so that the BEBR engine can support indexing among multiple embedding versions within a unified system. To further realize efficient search, we propose Symmetric Distance Calculation (SDC) to achieve lower response time than Hamming codes. We successfully employed the introduced BEBR to Tencent products, including Sogou, Tencent Video, QQ World, etc. The binarization algorithm can be seamlessly generalized to various tasks with multiple modalities. Extensive experiments on offline benchmarks and online A/B tests demonstrate the efficiency and effectiveness of our method, significantly saving 30%~50% index costs with almost no loss of accuracy at the system level.
Deep Lifelong Cross-modal Hashing
Hashing methods have made significant progress in cross-modal retrieval tasks with fast query speed and low storage cost. Among them, deep learning-based hashing achieves better performance on large-scale data due to its excellent extraction and representation ability for nonlinear heterogeneous features. However, there are still two main challenges in catastrophic forgetting when data with new categories arrive continuously, and time-consuming for non-continuous hashing retrieval to retrain for updating. To this end, we, in this paper, propose a novel deep lifelong cross-modal hashing to achieve lifelong hashing retrieval instead of re-training hash function repeatedly when new data arrive. Specifically, we design lifelong learning strategy to update hash functions by directly training the incremental data instead of retraining new hash functions using all the accumulated data, which significantly reduce training time. Then, we propose lifelong hashing loss to enable original hash codes participate in lifelong learning but remain invariant, and further preserve the similarity and dis-similarity among original and incremental hash codes to maintain performance. Additionally, considering distribution heterogeneity when new data arriving continuously, we introduce multi-label semantic similarity to supervise hash learning, and it has been proven that the similarity improves performance with detailed analysis. Experimental results on benchmark datasets show that the proposed methods achieves comparative performance comparing with recent state-of-the-art cross-modal hashing methods, and it yields substantial average increments over 20\% in retrieval accuracy and almost reduces over 80\% training time when new data arrives continuously.
Cross-modal Retrieval Models for Stripped Binary Analysis
LLM-agent based binary code analysis has demonstrated significant potential across a wide range of software security scenarios, including vulnerability detection, malware analysis, etc. In agent workflow, however, retrieving the positive from thousands of stripped binary functions based on user query remains under-studied and challenging, as the absence of symbolic information distinguishes it from source code retrieval. In this paper, we introduce, BinSeek, the first two-stage cross-modal retrieval framework for stripped binary code analysis. It consists of two models: BinSeekEmbedding is trained on large-scale dataset to learn the semantic relevance of the binary code and the natural language description, furthermore, BinSeek-Reranker learns to carefully judge the relevance of the candidate code to the description with context augmentation. To this end, we built an LLM-based data synthesis pipeline to automate training construction, also deriving a domain benchmark for future research. Our evaluation results show that BinSeek achieved the state-of-the-art performance, surpassing the the same scale models by 31.42% in Rec@3 and 27.17% in MRR@3, as well as leading the advanced general-purpose models that have 16 times larger parameters.
EcoFormer: Energy-Saving Attention with Linear Complexity
Transformer is a transformative framework that models sequential data and has achieved remarkable performance on a wide range of tasks, but with high computational and energy cost. To improve its efficiency, a popular choice is to compress the models via binarization which constrains the floating-point values into binary ones to save resource consumption owing to cheap bitwise operations significantly. However, existing binarization methods only aim at minimizing the information loss for the input distribution statistically, while ignoring the pairwise similarity modeling at the core of the attention. To this end, we propose a new binarization paradigm customized to high-dimensional softmax attention via kernelized hashing, called EcoFormer, to map the original queries and keys into low-dimensional binary codes in Hamming space. The kernelized hash functions are learned to match the ground-truth similarity relations extracted from the attention map in a self-supervised way. Based on the equivalence between the inner product of binary codes and the Hamming distance as well as the associative property of matrix multiplication, we can approximate the attention in linear complexity by expressing it as a dot-product of binary codes. Moreover, the compact binary representations of queries and keys enable us to replace most of the expensive multiply-accumulate operations in attention with simple accumulations to save considerable on-chip energy footprint on edge devices. Extensive experiments on both vision and language tasks show that EcoFormer consistently achieves comparable performance with standard attentions while consuming much fewer resources. For example, based on PVTv2-B0 and ImageNet-1K, Ecoformer achieves a 73% on-chip energy footprint reduction with only a 0.33% performance drop compared to the standard attention. Code is available at https://github.com/ziplab/EcoFormer.
Compacting Binary Neural Networks by Sparse Kernel Selection
Binary Neural Network (BNN) represents convolution weights with 1-bit values, which enhances the efficiency of storage and computation. This paper is motivated by a previously revealed phenomenon that the binary kernels in successful BNNs are nearly power-law distributed: their values are mostly clustered into a small number of codewords. This phenomenon encourages us to compact typical BNNs and obtain further close performance through learning non-repetitive kernels within a binary kernel subspace. Specifically, we regard the binarization process as kernel grouping in terms of a binary codebook, and our task lies in learning to select a smaller subset of codewords from the full codebook. We then leverage the Gumbel-Sinkhorn technique to approximate the codeword selection process, and develop the Permutation Straight-Through Estimator (PSTE) that is able to not only optimize the selection process end-to-end but also maintain the non-repetitive occupancy of selected codewords. Experiments verify that our method reduces both the model size and bit-wise computational costs, and achieves accuracy improvements compared with state-of-the-art BNNs under comparable budgets.
All You Need Is Hashing: Defending Against Data Reconstruction Attack in Vertical Federated Learning
Vertical federated learning is a trending solution for multi-party collaboration in training machine learning models. Industrial frameworks adopt secure multi-party computation methods such as homomorphic encryption to guarantee data security and privacy. However, a line of work has revealed that there are still leakage risks in VFL. The leakage is caused by the correlation between the intermediate representations and the raw data. Due to the powerful approximation ability of deep neural networks, an adversary can capture the correlation precisely and reconstruct the data. To deal with the threat of the data reconstruction attack, we propose a hashing-based VFL framework, called HashVFL, to cut off the reversibility directly. The one-way nature of hashing allows our framework to block all attempts to recover data from hash codes. However, integrating hashing also brings some challenges, e.g., the loss of information. This paper proposes and addresses three challenges to integrating hashing: learnability, bit balance, and consistency. Experimental results demonstrate HashVFL's efficiency in keeping the main task's performance and defending against data reconstruction attacks. Furthermore, we also analyze its potential value in detecting abnormal inputs. In addition, we conduct extensive experiments to prove HashVFL's generalization in various settings. In summary, HashVFL provides a new perspective on protecting multi-party's data security and privacy in VFL. We hope our study can attract more researchers to expand the application domains of HashVFL.
On Differentially Private String Distances
Given a database of bit strings A_1,ldots,A_min {0,1}^n, a fundamental data structure task is to estimate the distances between a given query Bin {0,1}^n with all the strings in the database. In addition, one might further want to ensure the integrity of the database by releasing these distance statistics in a secure manner. In this work, we propose differentially private (DP) data structures for this type of tasks, with a focus on Hamming and edit distance. On top of the strong privacy guarantees, our data structures are also time- and space-efficient. In particular, our data structure is epsilon-DP against any sequence of queries of arbitrary length, and for any query B such that the maximum distance to any string in the database is at most k, we output m distance estimates. Moreover, - For Hamming distance, our data structure answers any query in widetilde O(mk+n) time and each estimate deviates from the true distance by at most widetilde O(k/e^{epsilon/log k}); - For edit distance, our data structure answers any query in widetilde O(mk^2+n) time and each estimate deviates from the true distance by at most widetilde O(k/e^{epsilon/(log k log n)}). For moderate k, both data structures support sublinear query operations. We obtain these results via a novel adaptation of the randomized response technique as a bit flipping procedure, applied to the sketched strings.
Hash Layers For Large Sparse Models
We investigate the training of sparse layers that use different parameters for different inputs based on hashing in large Transformer models. Specifically, we modify the feedforward layer to hash to different sets of weights depending on the current token, over all tokens in the sequence. We show that this procedure either outperforms or is competitive with learning-to-route mixture-of-expert methods such as Switch Transformers and BASE Layers, while requiring no routing parameters or extra terms in the objective function such as a load balancing loss, and no sophisticated assignment algorithm. We study the performance of different hashing techniques, hash sizes and input features, and show that balanced and random hashes focused on the most local features work best, compared to either learning clusters or using longer-range context. We show our approach works well both on large language modeling and dialogue tasks, and on downstream fine-tuning tasks.
TrueChain: Highly Performant Decentralized Public Ledger
In this paper we present the initial design of Minerva consensus protocol for Truechain and other technical details. Currently, it is widely believed in the blockchain community that a public chain cannot simultaneously achieve high performance, decentralization and security. This is true in the case of a Nakamoto chain (low performance) or a delegated proof of stake chain (partially centralized), which are the most popular block chain solutions at time of writing. Our consensus design enjoys the same consistency, liveness, transaction finality and security guarantee, a de-facto with the Hybrid Consensus. We go on to propose the idea of a new virtual machine on top of Ethereum which adds permissioned-chain based transaction processing capabilities in a permissionless setting. We also use the idea of data sharding and speculative transactions, and evaluation of smart contracts in a sharding friendly virtual machine. Finally, we will briefly discuss our fundamentally ASIC resistant mining algorithm, Truehash.
HashEvict: A Pre-Attention KV Cache Eviction Strategy using Locality-Sensitive Hashing
Transformer-based large language models (LLMs) use the key-value (KV) cache to significantly accelerate inference by storing the key and value embeddings of past tokens. However, this cache consumes significant GPU memory. In this work, we introduce HashEvict, an algorithm that uses locality-sensitive hashing (LSH) to compress the KV cache. HashEvict quickly locates tokens in the cache that are cosine dissimilar to the current query token. This is achieved by computing the Hamming distance between binarized Gaussian projections of the current token query and cached token keys, with a projection length much smaller than the embedding dimension. We maintain a lightweight binary structure in GPU memory to facilitate these calculations. Unlike existing compression strategies that compute attention to determine token retention, HashEvict makes these decisions pre-attention, thereby reducing computational costs. Additionally, HashEvict is dynamic - at every decoding step, the key and value of the current token replace the embeddings of a token expected to produce the lowest attention score. We demonstrate that HashEvict can compress the KV cache by 30%-70% while maintaining high performance across reasoning, multiple-choice, long-context retrieval and summarization tasks.
Compiling C to Safe Rust, Formalized
The popularity of the Rust language continues to explode; yet, many critical codebases remain authored in C, and cannot be realistically rewritten by hand. Automatically translating C to Rust is thus an appealing course of action. Several works have gone down this path, handling an ever-increasing subset of C through a variety of Rust features, such as unsafe. While the prospect of automation is appealing, producing code that relies on unsafe negates the memory safety guarantees offered by Rust, and therefore the main advantages of porting existing codebases to memory-safe languages. We instead explore a different path, and explore what it would take to translate C to safe Rust; that is, to produce code that is trivially memory safe, because it abides by Rust's type system without caveats. Our work sports several original contributions: a type-directed translation from (a subset of) C to safe Rust; a novel static analysis based on "split trees" that allows expressing C's pointer arithmetic using Rust's slices and splitting operations; an analysis that infers exactly which borrows need to be mutable; and a compilation strategy for C's struct types that is compatible with Rust's distinction between non-owned and owned allocations. We apply our methodology to existing formally verified C codebases: the HACL* cryptographic library, and binary parsers and serializers from EverParse, and show that the subset of C we support is sufficient to translate both applications to safe Rust. Our evaluation shows that for the few places that do violate Rust's aliasing discipline, automated, surgical rewrites suffice; and that the few strategic copies we insert have a negligible performance impact. Of particular note, the application of our approach to HACL* results in a 80,000 line verified cryptographic library, written in pure Rust, that implements all modern algorithms - the first of its kind.
Sketches image analysis: Web image search engine usingLSH index and DNN InceptionV3
The adoption of an appropriate approximate similarity search method is an essential prereq-uisite for developing a fast and efficient CBIR system, especially when dealing with large amount ofdata. In this study we implement a web image search engine on top of a Locality Sensitive Hashing(LSH) Index to allow fast similarity search on deep features. Specifically, we exploit transfer learningfor deep features extraction from images. Firstly, we adopt InceptionV3 pretrained on ImageNet asfeatures extractor, secondly, we try out several CNNs built on top of InceptionV3 as convolutionalbase fine-tuned on our dataset. In both of the previous cases we index the features extracted within ourLSH index implementation so as to compare the retrieval performances with and without fine-tuning.In our approach we try out two different LSH implementations: the first one working with real numberfeature vectors and the second one with the binary transposed version of those vectors. Interestingly,we obtain the best performances when using the binary LSH, reaching almost the same result, in termsof mean average precision, obtained by performing sequential scan of the features, thus avoiding thebias introduced by the LSH index. Lastly, we carry out a performance analysis class by class in terms ofrecall againstmAPhighlighting, as expected, a strong positive correlation between the two.
Can Neural Decompilation Assist Vulnerability Prediction on Binary Code?
Vulnerability prediction is valuable in identifying security issues more efficiently, even though it requires the source code of the target software system, which is a restrictive hypothesis. This paper presents an experimental study to predict vulnerabilities in binary code without source code or complex representations of the binary, leveraging the pivotal idea of decompiling the binary file through neural decompilation and predicting vulnerabilities through deep learning on the decompiled source code. The results outperform the state-of-the-art in both neural decompilation and vulnerability prediction, showing that it is possible to identify vulnerable programs with this approach concerning bi-class (vulnerable/non-vulnerable) and multi-class (type of vulnerability) analysis.
Binary-30K: A Heterogeneous Dataset for Deep Learning in Binary Analysis and Malware Detection
Deep learning research for binary analysis faces a critical infrastructure gap. Today, existing datasets target single platforms, require specialized tooling, or provide only hand-engineered features incompatible with modern neural architectures; no single dataset supports accessible research and pedagogy on realistic use cases. To solve this, we introduce Binary-30K, the first heterogeneous binary dataset designed for sequence-based models like transformers. Critically, Binary-30K covers Windows, Linux, macOS, and Android across 15+ CPU architectures. With 29,793 binaries and approximately 26.93% malware representation, Binary-30K enables research on platform-invariant detection, cross-target transfer learning, and long-context binary understanding. The dataset provides pre-computed byte-level BPE tokenization alongside comprehensive structural metadata, supporting both sequence modeling and structure-aware approaches. Platform-first stratified sampling ensures representative coverage across operating systems and architectures, while distribution via Hugging Face with official train/validation/test splits enables reproducible benchmarking. The dataset is publicly available at https://huggingface.co/datasets/mjbommar/binary-30k, providing an accessible resource for researchers, practitioners, and students alike.
Unsafe's Betrayal: Abusing Unsafe Rust in Binary Reverse Engineering via Machine Learning
Memory-safety bugs introduce critical software-security issues. Rust provides memory-safe mechanisms to avoid memory-safety bugs in programming, while still allowing unsafe escape hatches via unsafe code. However, the unsafe code that enhances the usability of Rust provides clear spots for finding memory-safety bugs in Rust source code. In this paper, we claim that these unsafe spots can still be identifiable in Rust binary code via machine learning and be leveraged for finding memory-safety bugs. To support our claim, we propose the tool textttrustspot, that enables reverse engineering to learn an unsafe classifier that proposes a list of functions in Rust binaries for downstream analysis. We empirically show that the function proposals by textttrustspot can recall 92.92% of memory-safety bugs, while it covers only 16.79% of the entire binary code. As an application, we demonstrate that the function proposals are used in targeted fuzzing on Rust packages, which contribute to reducing the fuzzing time compared to non-targeted fuzzing.
Malware Detection by Eating a Whole EXE
In this work we introduce malware detection from raw byte sequences as a fruitful research area to the larger machine learning community. Building a neural network for such a problem presents a number of interesting challenges that have not occurred in tasks such as image processing or NLP. In particular, we note that detection from raw bytes presents a sequence problem with over two million time steps and a problem where batch normalization appear to hinder the learning process. We present our initial work in building a solution to tackle this problem, which has linear complexity dependence on the sequence length, and allows for interpretable sub-regions of the binary to be identified. In doing so we will discuss the many challenges in building a neural network to process data at this scale, and the methods we used to work around them.
Watermarking Images in Self-Supervised Latent Spaces
We revisit watermarking techniques based on pre-trained deep networks, in the light of self-supervised approaches. We present a way to embed both marks and binary messages into their latent spaces, leveraging data augmentation at marking time. Our method can operate at any resolution and creates watermarks robust to a broad range of transformations (rotations, crops, JPEG, contrast, etc). It significantly outperforms the previous zero-bit methods, and its performance on multi-bit watermarking is on par with state-of-the-art encoder-decoder architectures trained end-to-end for watermarking. The code is available at github.com/facebookresearch/ssl_watermarking
Watermarking Text Generated by Black-Box Language Models
LLMs now exhibit human-like skills in various fields, leading to worries about misuse. Thus, detecting generated text is crucial. However, passive detection methods are stuck in domain specificity and limited adversarial robustness. To achieve reliable detection, a watermark-based method was proposed for white-box LLMs, allowing them to embed watermarks during text generation. The method involves randomly dividing the model vocabulary to obtain a special list and adjusting the probability distribution to promote the selection of words in the list. A detection algorithm aware of the list can identify the watermarked text. However, this method is not applicable in many real-world scenarios where only black-box language models are available. For instance, third-parties that develop API-based vertical applications cannot watermark text themselves because API providers only supply generated text and withhold probability distributions to shield their commercial interests. To allow third-parties to autonomously inject watermarks into generated text, we develop a watermarking framework for black-box language model usage scenarios. Specifically, we first define a binary encoding function to compute a random binary encoding corresponding to a word. The encodings computed for non-watermarked text conform to a Bernoulli distribution, wherein the probability of a word representing bit-1 being approximately 0.5. To inject a watermark, we alter the distribution by selectively replacing words representing bit-0 with context-based synonyms that represent bit-1. A statistical test is then used to identify the watermark. Experiments demonstrate the effectiveness of our method on both Chinese and English datasets. Furthermore, results under re-translation, polishing, word deletion, and synonym substitution attacks reveal that it is arduous to remove the watermark without compromising the original semantics.
1-bit AI Infra: Part 1.1, Fast and Lossless BitNet b1.58 Inference on CPUs
Recent advances in 1-bit Large Language Models (LLMs), such as BitNet and BitNet b1.58, present a promising approach to enhancing the efficiency of LLMs in terms of speed and energy consumption. These developments also enable local LLM deployment across a broad range of devices. In this work, we introduce bitnet.cpp, a tailored software stack designed to unlock the full potential of 1-bit LLMs. Specifically, we develop a set of kernels to support fast and lossless inference of ternary BitNet b1.58 LLMs on CPUs. Extensive experiments demonstrate that bitnet.cpp achieves significant speedups, ranging from 2.37x to 6.17x on x86 CPUs and from 1.37x to 5.07x on ARM CPUs, across various model sizes. The code is available at https://github.com/microsoft/BitNet.
Decompile-Bench: Million-Scale Binary-Source Function Pairs for Real-World Binary Decompilation
Recent advances in LLM-based decompilers have been shown effective to convert low-level binaries into human-readable source code. However, there still lacks a comprehensive benchmark that provides large-scale binary-source function pairs, which is critical for advancing the LLM decompilation technology. Creating accurate binary-source mappings incurs severe issues caused by complex compilation settings and widespread function inlining that obscure the correspondence between binaries and their original source code. Previous efforts have either relied on used contest-style benchmarks, synthetic binary-source mappings that diverge significantly from the mappings in real world, or partially matched binaries with only code lines or variable names, compromising the effectiveness of analyzing the binary functionality. To alleviate these issues, we introduce Decompile-Bench, the first open-source dataset comprising two million binary-source function pairs condensed from 100 million collected function pairs, i.e., 450GB of binaries compiled from permissively licensed GitHub projects. For the evaluation purposes, we also developed a benchmark Decompile-Bench-Eval including manually crafted binaries from the well-established HumanEval and MBPP, alongside the compiled GitHub repositories released after 2025 to mitigate data leakage issues. We further explore commonly-used evaluation metrics to provide a thorough assessment of the studied LLM decompilers and find that fine-tuning with Decompile-Bench causes a 20% improvement over previous benchmarks in terms of the re-executability rate. Our code and data has been released in HuggingFace and Github. https://github.com/albertan017/LLM4Decompile
Multi hash embeddings in spaCy
The distributed representation of symbols is one of the key technologies in machine learning systems today, playing a pivotal role in modern natural language processing. Traditional word embeddings associate a separate vector with each word. While this approach is simple and leads to good performance, it requires a lot of memory for representing a large vocabulary. To reduce the memory footprint, the default embedding layer in spaCy is a hash embeddings layer. It is a stochastic approximation of traditional embeddings that provides unique vectors for a large number of words without explicitly storing a separate vector for each of them. To be able to compute meaningful representations for both known and unknown words, hash embeddings represent each word as a summary of the normalized word form, subword information and word shape. Together, these features produce a multi-embedding of a word. In this technical report we lay out a bit of history and introduce the embedding methods in spaCy in detail. Second, we critically evaluate the hash embedding architecture with multi-embeddings on Named Entity Recognition datasets from a variety of domains and languages. The experiments validate most key design choices behind spaCy's embedders, but we also uncover a few surprising results.
BiBench: Benchmarking and Analyzing Network Binarization
Network binarization emerges as one of the most promising compression approaches offering extraordinary computation and memory savings by minimizing the bit-width. However, recent research has shown that applying existing binarization algorithms to diverse tasks, architectures, and hardware in realistic scenarios is still not straightforward. Common challenges of binarization, such as accuracy degradation and efficiency limitation, suggest that its attributes are not fully understood. To close this gap, we present BiBench, a rigorously designed benchmark with in-depth analysis for network binarization. We first carefully scrutinize the requirements of binarization in the actual production and define evaluation tracks and metrics for a comprehensive and fair investigation. Then, we evaluate and analyze a series of milestone binarization algorithms that function at the operator level and with extensive influence. Our benchmark reveals that 1) the binarized operator has a crucial impact on the performance and deployability of binarized networks; 2) the accuracy of binarization varies significantly across different learning tasks and neural architectures; 3) binarization has demonstrated promising efficiency potential on edge devices despite the limited hardware support. The results and analysis also lead to a promising paradigm for accurate and efficient binarization. We believe that BiBench will contribute to the broader adoption of binarization and serve as a foundation for future research. The code for our BiBench is released https://github.com/htqin/BiBench .
BTR: Binary Token Representations for Efficient Retrieval Augmented Language Models
Retrieval augmentation addresses many critical problems in large language models such as hallucination, staleness, and privacy leaks. However, running retrieval-augmented language models (LMs) is slow and difficult to scale due to processing large amounts of retrieved text. We introduce binary token representations (BTR), which use 1-bit vectors to precompute every token in passages, significantly reducing computation during inference. Despite the potential loss of accuracy, our new calibration techniques and training objectives restore performance. Combined with offline and runtime compression, this only requires 127GB of disk space for encoding 3 billion tokens in Wikipedia. Our experiments show that on five knowledge-intensive NLP tasks, BTR accelerates state-of-the-art inference by up to 4x and reduces storage by over 100x while maintaining over 95% task performance.
Sampling Is All You Need on Modeling Long-Term User Behaviors for CTR Prediction
Rich user behavior data has been proven to be of great value for Click-Through Rate (CTR) prediction applications, especially in industrial recommender, search, or advertising systems. However, it's non-trivial for real-world systems to make full use of long-term user behaviors due to the strict requirements of online serving time. Most previous works adopt the retrieval-based strategy, where a small number of user behaviors are retrieved first for subsequent attention. However, the retrieval-based methods are sub-optimal and would cause more or less information losses, and it's difficult to balance the effectiveness and efficiency of the retrieval algorithm. In this paper, we propose SDIM (Sampling-based Deep Interest Modeling), a simple yet effective sampling-based end-to-end approach for modeling long-term user behaviors. We sample from multiple hash functions to generate hash signatures of the candidate item and each item in the user behavior sequence, and obtain the user interest by directly gathering behavior items associated with the candidate item with the same hash signature. We show theoretically and experimentally that the proposed method performs on par with standard attention-based models on modeling long-term user behaviors, while being sizable times faster. We also introduce the deployment of SDIM in our system. Specifically, we decouple the behavior sequence hashing, which is the most time-consuming part, from the CTR model by designing a separate module named BSE (behavior Sequence Encoding). BSE is latency-free for the CTR server, enabling us to model extremely long user behaviors. Both offline and online experiments are conducted to demonstrate the effectiveness of SDIM. SDIM now has been deployed online in the search system of Meituan APP.
Robust Multi-bit Text Watermark with LLM-based Paraphrasers
We propose an imperceptible multi-bit text watermark embedded by paraphrasing with LLMs. We fine-tune a pair of LLM paraphrasers that are designed to behave differently so that their paraphrasing difference reflected in the text semantics can be identified by a trained decoder. To embed our multi-bit watermark, we use two paraphrasers alternatively to encode the pre-defined binary code at the sentence level. Then we use a text classifier as the decoder to decode each bit of the watermark. Through extensive experiments, we show that our watermarks can achieve over 99.99\% detection AUC with small (1.1B) text paraphrasers while keeping the semantic information of the original sentence. More importantly, our pipeline is robust under word substitution and sentence paraphrasing perturbations and generalizes well to out-of-distributional data. We also show the stealthiness of our watermark with LLM-based evaluation. We open-source the code: https://github.com/xiaojunxu/multi-bit-text-watermark.
Automatic Classification of Object Code Using Machine Learning
Recent research has repeatedly shown that machine learning techniques can be applied to either whole files or file fragments to classify them for analysis. We build upon these techniques to show that for samples of un-labeled compiled computer object code, one can apply the same type of analysis to classify important aspects of the code, such as its target architecture and endianess. We show that using simple byte-value histograms we retain enough information about the opcodes within a sample to classify the target architecture with high accuracy, and then discuss heuristic-based features that exploit information within the operands to determine endianess. We introduce a dataset with over 16000 code samples from 20 architectures and experimentally show that by using our features, classifiers can achieve very high accuracy with relatively small sample sizes.
On Collective Robustness of Bagging Against Data Poisoning
Bootstrap aggregating (bagging) is an effective ensemble protocol, which is believed can enhance robustness by its majority voting mechanism. Recent works further prove the sample-wise robustness certificates for certain forms of bagging (e.g. partition aggregation). Beyond these particular forms, in this paper, we propose the first collective certification for general bagging to compute the tight robustness against the global poisoning attack. Specifically, we compute the maximum number of simultaneously changed predictions via solving a binary integer linear programming (BILP) problem. Then we analyze the robustness of vanilla bagging and give the upper bound of the tolerable poison budget. Based on this analysis, we propose hash bagging to improve the robustness of vanilla bagging almost for free. This is achieved by modifying the random subsampling in vanilla bagging to a hash-based deterministic subsampling, as a way of controlling the influence scope for each poisoning sample universally. Our extensive experiments show the notable advantage in terms of applicability and robustness.
One-bit Flip is All You Need: When Bit-flip Attack Meets Model Training
Deep neural networks (DNNs) are widely deployed on real-world devices. Concerns regarding their security have gained great attention from researchers. Recently, a new weight modification attack called bit flip attack (BFA) was proposed, which exploits memory fault inject techniques such as row hammer to attack quantized models in the deployment stage. With only a few bit flips, the target model can be rendered useless as a random guesser or even be implanted with malicious functionalities. In this work, we seek to further reduce the number of bit flips. We propose a training-assisted bit flip attack, in which the adversary is involved in the training stage to build a high-risk model to release. This high-risk model, obtained coupled with a corresponding malicious model, behaves normally and can escape various detection methods. The results on benchmark datasets show that an adversary can easily convert this high-risk but normal model to a malicious one on victim's side by flipping only one critical bit on average in the deployment stage. Moreover, our attack still poses a significant threat even when defenses are employed. The codes for reproducing main experiments are available at https://github.com/jianshuod/TBA.
Over-Threshold Multiparty Private Set Intersection for Collaborative Network Intrusion Detection
An important function of collaborative network intrusion detection is to analyze the network logs of the collaborators for joint IP addresses. However, sharing IP addresses in plain is sensitive and may be even subject to privacy legislation as it is personally identifiable information. In this paper, we present the privacy-preserving collection of IP addresses. We propose a single collector, over-threshold private set intersection protocol. In this protocol N participants identify the IP addresses that appear in at least t participant's sets without revealing any information about other IP addresses. Using a novel hashing scheme, we reduce the computational complexity of the previous state-of-the-art solution from O(M(N M/t)^{2t}) to O(t^2MN{t}), where M denotes the dataset size. This reduction makes it practically feasible to apply our protocol to real network logs. We test our protocol using joint networks logs of multiple institutions. Additionally, we present two deployment options: a collusion-safe deployment, which provides stronger security guarantees at the cost of increased communication overhead, and a non-interactive deployment, which assumes a non-colluding collector but offers significantly lower communication costs and applicable to many use cases of collaborative network intrusion detection similar to ours.
FastText.zip: Compressing text classification models
We consider the problem of producing compact architectures for text classification, such that the full model fits in a limited amount of memory. After considering different solutions inspired by the hashing literature, we propose a method built upon product quantization to store word embeddings. While the original technique leads to a loss in accuracy, we adapt this method to circumvent quantization artefacts. Our experiments carried out on several benchmarks show that our approach typically requires two orders of magnitude less memory than fastText while being only slightly inferior with respect to accuracy. As a result, it outperforms the state of the art by a good margin in terms of the compromise between memory usage and accuracy.
PromptHash: Affinity-Prompted Collaborative Cross-Modal Learning for Adaptive Hashing Retrieval
Cross-modal hashing is a promising approach for efficient data retrieval and storage optimization. However, contemporary methods exhibit significant limitations in semantic preservation, contextual integrity, and information redundancy, which constrains retrieval efficacy. We present PromptHash, an innovative framework leveraging affinity prompt-aware collaborative learning for adaptive cross-modal hashing. We propose an end-to-end framework for affinity-prompted collaborative hashing, with the following fundamental technical contributions: (i) a text affinity prompt learning mechanism that preserves contextual information while maintaining parameter efficiency, (ii) an adaptive gated selection fusion architecture that synthesizes State Space Model with Transformer network for precise cross-modal feature integration, and (iii) a prompt affinity alignment strategy that bridges modal heterogeneity through hierarchical contrastive learning. To the best of our knowledge, this study presents the first investigation into affinity prompt awareness within collaborative cross-modal adaptive hash learning, establishing a paradigm for enhanced semantic consistency across modalities. Through comprehensive evaluation on three benchmark multi-label datasets, PromptHash demonstrates substantial performance improvements over existing approaches. Notably, on the NUS-WIDE dataset, our method achieves significant gains of 18.22% and 18.65% in image-to-text and text-to-image retrieval tasks, respectively. The code is publicly available at https://github.com/ShiShuMo/PromptHash.
Enumeration of linear codes with different hulls
The hull of a linear code C is the intersection of C with its dual code. We present and analyze the number of linear q-ary codes of the same length and dimension but with different dimensions for their hulls. We prove that for given dimension k and length nge 2k the number of all [n,k]_q linear codes with hull dimension l decreases as l increases. We also present classification results for binary and ternary linear codes with trivial hulls (LCD and self-orthogonal) for some values of the length n and dimension k, comparing the obtained numbers with the number of all linear codes for the given n and k.
Exploiting Instruction-Following Retrievers for Malicious Information Retrieval
Instruction-following retrievers have been widely adopted alongside LLMs in real-world applications, but little work has investigated the safety risks surrounding their increasing search capabilities. We empirically study the ability of retrievers to satisfy malicious queries, both when used directly and when used in a retrieval augmented generation-based setup. Concretely, we investigate six leading retrievers, including NV-Embed and LLM2Vec, and find that given malicious requests, most retrievers can (for >50% of queries) select relevant harmful passages. For example, LLM2Vec correctly selects passages for 61.35% of our malicious queries. We further uncover an emerging risk with instruction-following retrievers, where highly relevant harmful information can be surfaced by exploiting their instruction-following capabilities. Finally, we show that even safety-aligned LLMs, such as Llama3, can satisfy malicious requests when provided with harmful retrieved passages in-context. In summary, our findings underscore the malicious misuse risks associated with increasing retriever capability.
RREH: Reconstruction Relations Embedded Hashing for Semi-Paired Cross-Modal Retrieval
Known for efficient computation and easy storage, hashing has been extensively explored in cross-modal retrieval. The majority of current hashing models are predicated on the premise of a direct one-to-one mapping between data points. However, in real practice, data correspondence across modalities may be partially provided. In this research, we introduce an innovative unsupervised hashing technique designed for semi-paired cross-modal retrieval tasks, named Reconstruction Relations Embedded Hashing (RREH). RREH assumes that multi-modal data share a common subspace. For paired data, RREH explores the latent consistent information of heterogeneous modalities by seeking a shared representation. For unpaired data, to effectively capture the latent discriminative features, the high-order relationships between unpaired data and anchors are embedded into the latent subspace, which are computed by efficient linear reconstruction. The anchors are sampled from paired data, which improves the efficiency of hash learning. The RREH trains the underlying features and the binary encodings in a unified framework with high-order reconstruction relations preserved. With the well devised objective function and discrete optimization algorithm, RREH is designed to be scalable, making it suitable for large-scale datasets and facilitating efficient cross-modal retrieval. In the evaluation process, the proposed is tested with partially paired data to establish its superiority over several existing methods.
Binary and Ternary Natural Language Generation
Ternary and binary neural networks enable multiplication-free computation and promise multiple orders of magnitude efficiency gains over full-precision networks if implemented on specialized hardware. However, since both the parameter and the output space are highly discretized, such networks have proven very difficult to optimize. The difficulties are compounded for the class of transformer text generation models due to the sensitivity of the attention operation to quantization and the noise-compounding effects of autoregressive decoding in the high-cardinality output space. We approach the problem with a mix of statistics-based quantization for the weights and elastic quantization of the activations and demonstrate the first ternary and binary transformer models on the downstream tasks of summarization and machine translation. Our ternary BART base achieves an R1 score of 41 on the CNN/DailyMail benchmark, which is merely 3.9 points behind the full model while being 16x more efficient. Our binary model, while less accurate, achieves a highly non-trivial score of 35.6. For machine translation, we achieved BLEU scores of 21.7 and 17.6 on the WMT16 En-Ro benchmark, compared with a full precision mBART model score of 26.8. We also compare our approach in the 8-bit activation setting, where our ternary and even binary weight models can match or outperform the best existing 8-bit weight models in the literature. Our code and models are available at: https://github.com/facebookresearch/Ternary_Binary_Transformer
Binary BPE: A Family of Cross-Platform Tokenizers for Binary Analysis
Sequence models for binary analysis are bottlenecked by byte-level tokenization: raw bytes waste precious context window capacity for transformers and other neural network architectures, and many existing text-oriented tokenizers fail on arbitrary 0x00--0xFF sequences. To address this issue, we introduce the Binary BPE tokenizer family, a set of cross-platform Byte Pair Encoding (BPE) tokenizers for executables trained on a large corpus of binaries spanning multiple platforms, architectures, and operating systems, including Linux, Windows, macOS, Android, and malware sources. We release trained tokenizers with vocabularies of 4K, 8K, 16K, 32K, and 64K tokens, enabling both systematic scaling studies and practical deployment from resource-constrained edge devices to high-throughput datacenters. These tokenizers discover interpretable patterns (ELF/PE headers, instruction sequences, cross-platform strings) while yielding multi-byte compression per token. On representative uncompressed executables (e.g., ELF/PE/Mach-O rather than compressed APKs), the Binary BPE tokenizers typically allow for roughly 2-3x more binary content per fixed-length transformer context window than raw bytes, enabling more efficient research and practical deployment for content identification, malware detection, reverse engineering, and optimization. We release the trained Binary BPE tokenizers on HuggingFace, providing a drop-in, open-source foundation for binary-focused language models and context-efficient agentic tools.
Real-Time Community Detection in Large Social Networks on a Laptop
For a broad range of research, governmental and commercial applications it is important to understand the allegiances, communities and structure of key players in society. One promising direction towards extracting this information is to exploit the rich relational data in digital social networks (the social graph). As social media data sets are very large, most approaches make use of distributed computing systems for this purpose. Distributing graph processing requires solving many difficult engineering problems, which has lead some researchers to look at single-machine solutions that are faster and easier to maintain. In this article, we present a single-machine real-time system for large-scale graph processing that allows analysts to interactively explore graph structures. The key idea is that the aggregate actions of large numbers of users can be compressed into a data structure that encapsulates user similarities while being robust to noise and queryable in real-time. We achieve single machine real-time performance by compressing the neighbourhood of each vertex using minhash signatures and facilitate rapid queries through Locality Sensitive Hashing. These techniques reduce query times from hours using industrial desktop machines operating on the full graph to milliseconds on standard laptops. Our method allows exploration of strongly associated regions (i.e. communities) of large graphs in real-time on a laptop. It has been deployed in software that is actively used by social network analysts and offers another channel for media owners to monetise their data, helping them to continue to provide free services that are valued by billions of people globally.
BitStack: Fine-Grained Size Control for Compressed Large Language Models in Variable Memory Environments
Large language models (LLMs) have revolutionized numerous applications, yet their deployment remains challenged by memory constraints on local devices. While scaling laws have enhanced LLM capabilities, the primary bottleneck has shifted from capability to availability, emphasizing the need for efficient memory management. Traditional compression methods, such as quantization, often require predefined compression ratios and separate compression processes for each setting, complicating deployment in variable memory environments. In this paper, we introduce BitStack, a novel, training-free weight compression approach that enables megabyte-level trade-offs between memory usage and model performance. By leveraging weight decomposition, BitStack can dynamically adjust the model size with minimal transmission between running memory and storage devices. Our approach iteratively decomposes weight matrices while considering the significance of each parameter, resulting in an approximately 1-bit per parameter residual block in each decomposition iteration. These blocks are sorted and stacked in storage as basic transmission units, with different quantities loaded based on current memory availability. Extensive experiments across a wide range of tasks demonstrate that, despite offering fine-grained size control, BitStack consistently matches or surpasses strong quantization baselines, particularly at extreme compression ratios. To the best of our knowledge, this is the first decomposition-based method that effectively bridges the gap to practical compression techniques like quantization. Code is available at https://github.com/xinghaow99/BitStack.
Neural networks behave as hash encoders: An empirical study
The input space of a neural network with ReLU-like activations is partitioned into multiple linear regions, each corresponding to a specific activation pattern of the included ReLU-like activations. We demonstrate that this partition exhibits the following encoding properties across a variety of deep learning models: (1) {\it determinism}: almost every linear region contains at most one training example. We can therefore represent almost every training example by a unique activation pattern, which is parameterized by a {\it neural code}; and (2) {\it categorization}: according to the neural code, simple algorithms, such as K-Means, K-NN, and logistic regression, can achieve fairly good performance on both training and test data. These encoding properties surprisingly suggest that {\it normal neural networks well-trained for classification behave as hash encoders without any extra efforts.} In addition, the encoding properties exhibit variability in different scenarios. {Further experiments demonstrate that {\it model size}, {\it training time}, {\it training sample size}, {\it regularization}, and {\it label noise} contribute in shaping the encoding properties, while the impacts of the first three are dominant.} We then define an {\it activation hash phase chart} to represent the space expanded by {model size}, training time, training sample size, and the encoding properties, which is divided into three canonical regions: {\it under-expressive regime}, {\it critically-expressive regime}, and {\it sufficiently-expressive regime}. The source code package is available at https://github.com/LeavesLei/activation-code.
CLAP: Learning Transferable Binary Code Representations with Natural Language Supervision
Binary code representation learning has shown significant performance in binary analysis tasks. But existing solutions often have poor transferability, particularly in few-shot and zero-shot scenarios where few or no training samples are available for the tasks. To address this problem, we present CLAP (Contrastive Language-Assembly Pre-training), which employs natural language supervision to learn better representations of binary code (i.e., assembly code) and get better transferability. At the core, our approach boosts superior transfer learning capabilities by effectively aligning binary code with their semantics explanations (in natural language), resulting a model able to generate better embeddings for binary code. To enable this alignment training, we then propose an efficient dataset engine that could automatically generate a large and diverse dataset comprising of binary code and corresponding natural language explanations. We have generated 195 million pairs of binary code and explanations and trained a prototype of CLAP. The evaluations of CLAP across various downstream tasks in binary analysis all demonstrate exceptional performance. Notably, without any task-specific training, CLAP is often competitive with a fully supervised baseline, showing excellent transferability. We release our pre-trained model and code at https://github.com/Hustcw/CLAP.
LSHBloom: Memory-efficient, Extreme-scale Document Deduplication
Deduplication is a major focus for assembling and curating training datasets for large language models (LLM) -- detecting and eliminating additional instances of the same content -- in large collections of technical documents. Unrestrained, duplicates in the training dataset increase training costs and lead to undesirable properties such as memorization in trained models or cheating on evaluation. Contemporary approaches to document-level deduplication are often extremely expensive in both runtime and memory. We propose LSHBloom, an extension to MinhashLSH, which replaces the expensive LSHIndex with lightweight Bloom filters. LSHBloom demonstrates the same deduplication performance as MinhashLSH with only a marginal increase in false positives (as low as 1e-5 in our experiments); demonstrates competitive runtime (270\% faster than MinhashLSH on peS2o); and, crucially, uses just 0.6\% of the disk space required by MinhashLSH to deduplicate peS2o. We demonstrate that this space advantage scales with increased dataset size -- at the extreme scale of several billion documents, LSHBloom promises a 250\% speedup and a 54times space advantage over traditional MinHashLSH scaling deduplication of text datasets to many billions of documents.
A Construction of Evolving k-threshold Secret Sharing Scheme over A Polynomial Ring
The threshold secret sharing scheme allows the dealer to distribute the share to every participant such that the secret is correctly recovered from a certain amount of shares. The traditional (k, n)-threshold secret sharing scheme requests that the number of participants n is known in advance. In contrast, the evolving secret sharing scheme allows that n can be uncertain and even ever-growing. In this paper, we consider the evolving secret sharing scenario. Using the prefix codes and the properties of the polynomial ring, we propose a brand-new construction of evolving k-threshold secret sharing scheme for an ell-bit secret over a polynomial ring, with correctness and perfect security. The proposed schemes establish the connection between prefix codes and the evolving schemes for kgeq2, and are also first evolving k-threshold secret sharing schemes by generalizing Shamir's scheme onto a polynomial ring. Specifically, the proposal also provides an unified mathematical decryption for prior evolving 2-threshold secret sharing schemes. Besides, the analysis of the proposed schemes show that the size of the t-th share is (k-1)(ell_t-1)+ell bits, where ell_t denotes the length of a binary prefix code of encoding integer t. In particular, when delta code is chosen as the prefix code, the share size achieves (k-1)lfloorlg trfloor+2(k-1)lfloorlg ({lfloorlg trfloor+1}) rfloor+ell, which improves the prior best result (k-1)lg t+6k^4elllg tcdotlg {lg t}+ 7k^4elllg k, where lg denotes the binary logarithm. When k=2, the proposed scheme also achieves the minimal share size for single-bit secret, which is the same as the best known scheme.
BinaryConnect: Training Deep Neural Networks with binary weights during propagations
Deep Neural Networks (DNN) have achieved state-of-the-art results in a wide range of tasks, with the best results obtained with large training sets and large models. In the past, GPUs enabled these breakthroughs because of their greater computational speed. In the future, faster computation at both training and test time is likely to be crucial for further progress and for consumer applications on low-power devices. As a result, there is much interest in research and development of dedicated hardware for Deep Learning (DL). Binary weights, i.e., weights which are constrained to only two possible values (e.g. -1 or 1), would bring great benefits to specialized DL hardware by replacing many multiply-accumulate operations by simple accumulations, as multipliers are the most space and power-hungry components of the digital implementation of neural networks. We introduce BinaryConnect, a method which consists in training a DNN with binary weights during the forward and backward propagations, while retaining precision of the stored weights in which gradients are accumulated. Like other dropout schemes, we show that BinaryConnect acts as regularizer and we obtain near state-of-the-art results with BinaryConnect on the permutation-invariant MNIST, CIFAR-10 and SVHN.
GraphHash: Graph Clustering Enables Parameter Efficiency in Recommender Systems
Deep recommender systems rely heavily on large embedding tables to handle high-cardinality categorical features such as user/item identifiers, and face significant memory constraints at scale. To tackle this challenge, hashing techniques are often employed to map multiple entities to the same embedding and thus reduce the size of the embedding tables. Concurrently, graph-based collaborative signals have emerged as powerful tools in recommender systems, yet their potential for optimizing embedding table reduction remains unexplored. This paper introduces GraphHash, the first graph-based approach that leverages modularity-based bipartite graph clustering on user-item interaction graphs to reduce embedding table sizes. We demonstrate that the modularity objective has a theoretical connection to message-passing, which provides a foundation for our method. By employing fast clustering algorithms, GraphHash serves as a computationally efficient proxy for message-passing during preprocessing and a plug-and-play graph-based alternative to traditional ID hashing. Extensive experiments show that GraphHash substantially outperforms diverse hashing baselines on both retrieval and click-through-rate prediction tasks. In particular, GraphHash achieves on average a 101.52% improvement in recall when reducing the embedding table size by more than 75%, highlighting the value of graph-based collaborative information for model reduction. Our code is available at https://github.com/snap-research/GraphHash.
Predictive-CSM: Lightweight Fragment Security for 6LoWPAN IoT Networks
Fragmentation is a routine part of communication in 6LoWPAN-based IoT networks, designed to accommodate small frame sizes on constrained wireless links. However, this process introduces a critical vulnerability fragments are typically stored and processed before their legitimacy is confirmed, allowing attackers to exploit this gap with minimal effort. In this work, we explore a defense strategy that takes a more adaptive, behavior-aware approach to this problem. Our system, called Predictive-CSM, introduces a combination of two lightweight mechanisms. The first tracks how each node behaves over time, rewarding consistent and successful interactions while quickly penalizing suspicious or failing patterns. The second checks the integrity of packet fragments using a chained hash, allowing incomplete or manipulated sequences to be caught early, before they can occupy memory or waste processing time. We put this system to the test using a set of targeted attack simulations, including early fragment injection, replayed headers, and flooding with fake data. Across all scenarios, Predictive CSM preserved network delivery and maintained energy efficiency, even under pressure. Rather than relying on heavyweight cryptography or rigid filters, this approach allows constrained de vices to adapt their defenses in real time based on what they observe, not just what they're told. In that way, it offers a step forward for securing fragmented communication in real world IoT systems
More for Keys, Less for Values: Adaptive KV Cache Quantization
This paper introduces an information-aware quantization framework that adaptively compresses the key-value (KV) cache in large language models (LLMs). Although prior work has underscored the distinct roles of key and value cache during inference, our systematic analysis -- examining singular value distributions, spectral norms, and Frobenius norms -- reveals, for the first time, that key matrices consistently exhibit higher norm values and are more sensitive to quantization than value matrices. Furthermore, our theoretical analysis shows that matrices with higher spectral norms amplify quantization errors more significantly. Motivated by these insights, we propose a mixed-precision quantization strategy, KV-AdaQuant, which allocates more bit-width for keys and fewer for values since key matrices have higher norm values. With the same total KV bit budget, this approach effectively mitigates error propagation across transformer layers while achieving significant memory savings. Our extensive experiments on multiple LLMs (1B--70B) demonstrate that our mixed-precision quantization scheme maintains high model accuracy even under aggressive compression. For instance, using 4-bit for Key and 2-bit for Value achieves an accuracy of 75.2%, whereas reversing the assignment (2-bit for Key and 4-bit for Value) yields only 54.7% accuracy. The code is available at https://tinyurl.com/kv-adaquant
You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling
Transformer-based models are widely used in natural language processing (NLP). Central to the transformer model is the self-attention mechanism, which captures the interactions of token pairs in the input sequences and depends quadratically on the sequence length. Training such models on longer sequences is expensive. In this paper, we show that a Bernoulli sampling attention mechanism based on Locality Sensitive Hashing (LSH), decreases the quadratic complexity of such models to linear. We bypass the quadratic cost by considering self-attention as a sum of individual tokens associated with Bernoulli random variables that can, in principle, be sampled at once by a single hash (although in practice, this number may be a small constant). This leads to an efficient sampling scheme to estimate self-attention which relies on specific modifications of LSH (to enable deployment on GPU architectures). We evaluate our algorithm on the GLUE benchmark with standard 512 sequence length where we see favorable performance relative to a standard pretrained Transformer. On the Long Range Arena (LRA) benchmark, for evaluating performance on long sequences, our method achieves results consistent with softmax self-attention but with sizable speed-ups and memory savings and often outperforms other efficient self-attention methods. Our code is available at https://github.com/mlpen/YOSO
BitNet Distillation
In this paper, we present BitNet Distillation (BitDistill), a lightweight pipeline that fine-tunes off-the-shelf full-precision LLMs (e.g., Qwen) into 1.58-bit precision (i.e., ternary weights {-1, 0, 1}) for specific downstream tasks, achieving strong task-specific performance with minimal computational cost. Specifically, BitDistill incorporates three key techniques: the SubLN module, as introduced in BitNet; multi-head attention distillation, based on MiniLM; and continual pre-training, which serves as a crucial warm-up step to mitigate the scalability issue of the performance gap between finetuned full-precision and 1.58-bit LLMs on specific tasks. Experimental results show that BitDistill achieves performance comparable to the full-precision counterpart models across model size, while enabling up to 10x memory savings and 2.65x faster inference on CPUs. Code is available at https://github.com/microsoft/BitNet.
Look-ups are not (yet) all you need for deep learning inference
Fast approximations to matrix multiplication have the potential to dramatically reduce the cost of neural network inference. Recent work on approximate matrix multiplication proposed to replace costly multiplications with table-lookups by fitting a fast hash function from training data. In this work, we propose improvements to this previous work, targeted to the deep learning inference setting, where one has access to both training data and fixed (already learned) model weight matrices. We further propose a fine-tuning procedure for accelerating entire neural networks while minimizing loss in accuracy. Finally, we analyze the proposed method on a simple image classification task. While we show improvements to prior work, overall classification accuracy remains substantially diminished compared to exact matrix multiplication. Our work, despite this negative result, points the way towards future efforts to accelerate inner products with fast nonlinear hashing methods.
On Securing Berrut Approximated Coded Computing Through Discrete Cosine Transforms
Coded computing is a reliable and fault-tolerant mechanism for implementing large computing tasks over a distributed set of worker nodes. While a majority of coded computing frameworks address accurate computation of the target functions, they are restricted to computing multivariate polynomial functions. To generalize these computing platforms to non-polynomial target functions, Jahani-Nezhad and Maddah-Ali recently proposed Berrut Approximated Coded computing (BACC), which was proven fault-tolerant against stragglers albiet with tolerable approximation errors on the target functions. Despite these benefits, there is no formal study on the security of BACC against worker nodes which report erroneous computations. To fill this research gap, we use a coding-theoretic approach to propose Secure Berrut Approximated Coded Computing (SBACC), which is resilient to stragglers and also robust to the presence of such untrusted worker nodes. One of the highlights of SBACC is the new choice of evaluation points for distributed computation which makes the well-known Discrete Cosine Transform (DCT) codes amenable to error detection and correction. To validate the new choice of evaluation points, first, we derive bounds on the accuracy of SBACC in the absence of untrusted worker nodes. Subsequently, to handle the presence of untrusted worker nodes, we derive bounds on the accuracy of SBACC and show that interesting optimization problems can be formulated to study the trade-off between the error correcting capability of the DCT codes and the accuracy of the target computation.
Representation Tradeoffs for Hyperbolic Embeddings
Hyperbolic embeddings offer excellent quality with few dimensions when embedding hierarchical data structures like synonym or type hierarchies. Given a tree, we give a combinatorial construction that embeds the tree in hyperbolic space with arbitrarily low distortion without using optimization. On WordNet, our combinatorial embedding obtains a mean-average-precision of 0.989 with only two dimensions, while Nickel et al.'s recent construction obtains 0.87 using 200 dimensions. We provide upper and lower bounds that allow us to characterize the precision-dimensionality tradeoff inherent in any hyperbolic embedding. To embed general metric spaces, we propose a hyperbolic generalization of multidimensional scaling (h-MDS). We show how to perform exact recovery of hyperbolic points from distances, provide a perturbation analysis, and give a recovery result that allows us to reduce dimensionality. The h-MDS approach offers consistently low distortion even with few dimensions across several datasets. Finally, we extract lessons from the algorithms and theory above to design a PyTorch-based implementation that can handle incomplete information and is scalable.
Post-Quantum Cryptography: Securing Digital Communication in the Quantum Era
The advent of quantum computing poses a profound threat to traditional cryptographic systems, exposing vulnerabilities that compromise the security of digital communication channels reliant on RSA, ECC, and similar classical encryption methods. Quantum algorithms, notably Shor's algorithm, exploit the inherent computational power of quantum computers to efficiently solve mathematical problems underlying these cryptographic schemes. In response, post-quantum cryptography (PQC) emerged as a critical field aimed at developing resilient cryptographic algorithms impervious to quantum attacks. This paper delineates the vulnerabilities of classical cryptographic systems to quantum attacks, elucidates the principles of quantum computing, and introduces various PQC algorithms such as lattice-based cryptography, code-based cryptography, hash-based cryptography, and multivariate polynomial cryptography. Highlighting the importance of PQC in securing digital communication amidst quantum computing advancements, this research underscores its pivotal role in safeguarding data integrity, confidentiality, and authenticity in the face of emerging quantum threats.
EinHops: Einsum Notation for Expressive Homomorphic Operations on RNS-CKKS Tensors
Fully Homomorphic Encryption (FHE) is an encryption scheme that allows for computation to be performed directly on encrypted data, effectively closing the loop on secure and outsourced computing. Data is encrypted not only during rest and transit, but also during processing. However, FHE provides a limited instruction set: SIMD addition, SIMD multiplication, and cyclic rotation of 1-D vectors. This restriction makes performing multi-dimensional tensor operations challenging. Practitioners must pack these tensors into 1-D vectors and map tensor operations onto this one-dimensional layout rather than their traditional nested structure. And while prior systems have made significant strides in automating this process, they often hide critical packing decisions behind layers of abstraction, making debugging, optimizing, and building on top of these systems difficult. In this work, we approach multi-dimensional tensor operations in FHE through Einstein summation (einsum) notation. Einsum notation explicitly encodes dimensional structure and operations in its syntax, naturally exposing how tensors should be packed and transformed. We decompose einsum expressions into a fixed set of FHE-friendly operations. We implement our design and present EinHops, a minimalist system that factors einsum expressions into a fixed sequence of FHE operations. EinHops enables developers to perform encrypted tensor operations using FHE while maintaining full visibility into the underlying packing strategy. We evaluate EinHops on a range of tensor operations from a simple transpose to complex multi-dimensional contractions. We show that the explicit nature of einsum notation allows us to build an FHE tensor system that is simple, general, and interpretable. We open-source EinHops at the following repository: https://github.com/baahl-nyu/einhops.
BiPer: Binary Neural Networks using a Periodic Function
Quantized neural networks employ reduced precision representations for both weights and activations. This quantization process significantly reduces the memory requirements and computational complexity of the network. Binary Neural Networks (BNNs) are the extreme quantization case, representing values with just one bit. Since the sign function is typically used to map real values to binary values, smooth approximations are introduced to mimic the gradients during error backpropagation. Thus, the mismatch between the forward and backward models corrupts the direction of the gradient, causing training inconsistency problems and performance degradation. In contrast to current BNN approaches, we propose to employ a binary periodic (BiPer) function during binarization. Specifically, we use a square wave for the forward pass to obtain the binary values and employ the trigonometric sine function with the same period of the square wave as a differentiable surrogate during the backward pass. We demonstrate that this approach can control the quantization error by using the frequency of the periodic function and improves network performance. Extensive experiments validate the effectiveness of BiPer in benchmark datasets and network architectures, with improvements of up to 1% and 0.69% with respect to state-of-the-art methods in the classification task over CIFAR-10 and ImageNet, respectively. Our code is publicly available at https://github.com/edmav4/BiPer.
BM25S: Orders of magnitude faster lexical search via eager sparse scoring
We introduce BM25S, an efficient Python-based implementation of BM25 that only depends on Numpy and Scipy. BM25S achieves up to a 500x speedup compared to the most popular Python-based framework by eagerly computing BM25 scores during indexing and storing them into sparse matrices. It also achieves considerable speedups compared to highly optimized Java-based implementations, which are used by popular commercial products. Finally, BM25S reproduces the exact implementation of five BM25 variants based on Kamphuis et al. (2020) by extending eager scoring to non-sparse variants using a novel score shifting method. The code can be found at https://github.com/xhluca/bm25s
Harnessing the Power of LLM to Support Binary Taint Analysis
This paper proposes LATTE, the first static binary taint analysis that is powered by a large language model (LLM). LATTE is superior to the state of the art (e.g., Emtaint, Arbiter, Karonte) in three aspects. First, LATTE is fully automated while prior static binary taint analyzers need rely on human expertise to manually customize taint propagation rules and vulnerability inspection rules. Second, LATTE is significantly effective in vulnerability detection, demonstrated by our comprehensive evaluations. For example, LATTE has found 37 new bugs in real-world firmware which the baselines failed to find, and 7 of them have been assigned CVE numbers. Lastly, LATTE incurs remarkably low engineering cost, making it a cost-efficient and scalable solution for security researchers and practitioners. We strongly believe that LATTE opens up a new direction to harness the recent advance in LLMs to improve vulnerability analysis for binary programs.
Bit Cipher -- A Simple yet Powerful Word Representation System that Integrates Efficiently with Language Models
While Large Language Models (LLMs) become ever more dominant, classic pre-trained word embeddings sustain their relevance through computational efficiency and nuanced linguistic interpretation. Drawing from recent studies demonstrating that the convergence of GloVe and word2vec optimizations all tend towards log-co-occurrence matrix variants, we construct a novel word representation system called Bit-cipher that eliminates the need of backpropagation while leveraging contextual information and hyper-efficient dimensionality reduction techniques based on unigram frequency, providing strong interpretability, alongside efficiency. We use the bit-cipher algorithm to train word vectors via a two-step process that critically relies on a hyperparameter -- bits -- that controls the vector dimension. While the first step trains the bit-cipher, the second utilizes it under two different aggregation modes -- summation or concatenation -- to produce contextually rich representations from word co-occurrences. We extend our investigation into bit-cipher's efficacy, performing probing experiments on part-of-speech (POS) tagging and named entity recognition (NER) to assess its competitiveness with classic embeddings like word2vec and GloVe. Additionally, we explore its applicability in LM training and fine-tuning. By replacing embedding layers with cipher embeddings, our experiments illustrate the notable efficiency of cipher in accelerating the training process and attaining better optima compared to conventional training paradigms. Experiments on the integration of bit-cipher embedding layers with Roberta, T5, and OPT, prior to or as a substitute for fine-tuning, showcase a promising enhancement to transfer learning, allowing rapid model convergence while preserving competitive performance.
HE is all you need: Compressing FHE Ciphertexts using Additive HE
Fully Homomorphic Encryption (FHE) permits the evaluation of an arbitrary function on encrypted data. However, FHE ciphertexts, particularly those based on lattice assumptions such as LWE/RLWE are very large compared to the underlying plaintext. Large ciphertexts are hard to communicate over the network and this is an obstacle to the adoption of FHE, particularly for clients with limited bandwidth. In this work, we propose the first technique to compress ciphertexts sent from the server to the client using an additive encryption scheme with smaller ciphertexts. Using the additive scheme, the client sends auxiliary information to the server which is used to compress the ciphertext. Our evaluation shows up to 95% percent and 97% compression for LWE and RLWE ciphertexts, respectively.
Compact Neural Graphics Primitives with Learned Hash Probing
Neural graphics primitives are faster and achieve higher quality when their neural networks are augmented by spatial data structures that hold trainable features arranged in a grid. However, existing feature grids either come with a large memory footprint (dense or factorized grids, trees, and hash tables) or slow performance (index learning and vector quantization). In this paper, we show that a hash table with learned probes has neither disadvantage, resulting in a favorable combination of size and speed. Inference is faster than unprobed hash tables at equal quality while training is only 1.2-2.6x slower, significantly outperforming prior index learning approaches. We arrive at this formulation by casting all feature grids into a common framework: they each correspond to a lookup function that indexes into a table of feature vectors. In this framework, the lookup functions of existing data structures can be combined by simple arithmetic combinations of their indices, resulting in Pareto optimal compression and speed.
Recommender Systems with Generative Retrieval
Modern recommender systems leverage large-scale retrieval models consisting of two stages: training a dual-encoder model to embed queries and candidates in the same space, followed by an Approximate Nearest Neighbor (ANN) search to select top candidates given a query's embedding. In this paper, we propose a new single-stage paradigm: a generative retrieval model which autoregressively decodes the identifiers for the target candidates in one phase. To do this, instead of assigning randomly generated atomic IDs to each item, we generate Semantic IDs: a semantically meaningful tuple of codewords for each item that serves as its unique identifier. We use a hierarchical method called RQ-VAE to generate these codewords. Once we have the Semantic IDs for all the items, a Transformer based sequence-to-sequence model is trained to predict the Semantic ID of the next item. Since this model predicts the tuple of codewords identifying the next item directly in an autoregressive manner, it can be considered a generative retrieval model. We show that our recommender system trained in this new paradigm improves the results achieved by current SOTA models on the Amazon dataset. Moreover, we demonstrate that the sequence-to-sequence model coupled with hierarchical Semantic IDs offers better generalization and hence improves retrieval of cold-start items for recommendations.
A Novel Approach to Malicious Code Detection Using CNN-BiLSTM and Feature Fusion
With the rapid advancement of Internet technology, the threat of malware to computer systems and network security has intensified. Malware affects individual privacy and security and poses risks to critical infrastructures of enterprises and nations. The increasing quantity and complexity of malware, along with its concealment and diversity, challenge traditional detection techniques. Static detection methods struggle against variants and packed malware, while dynamic methods face high costs and risks that limit their application. Consequently, there is an urgent need for novel and efficient malware detection techniques to improve accuracy and robustness. This study first employs the minhash algorithm to convert binary files of malware into grayscale images, followed by the extraction of global and local texture features using GIST and LBP algorithms. Additionally, the study utilizes IDA Pro to decompile and extract opcode sequences, applying N-gram and tf-idf algorithms for feature vectorization. The fusion of these features enables the model to comprehensively capture the behavioral characteristics of malware. In terms of model construction, a CNN-BiLSTM fusion model is designed to simultaneously process image features and opcode sequences, enhancing classification performance. Experimental validation on multiple public datasets demonstrates that the proposed method significantly outperforms traditional detection techniques in terms of accuracy, recall, and F1 score, particularly in detecting variants and obfuscated malware with greater stability. The research presented in this paper offers new insights into the development of malware detection technologies, validating the effectiveness of feature and model fusion, and holds promising application prospects.
Minimizing Information Leakage under Padding Constraints
An attacker can gain information of a user by analyzing its network traffic. The size of transferred data leaks information about the file being transferred or the service being used, and this is particularly revealing when the attacker has background knowledge about the files or services available for transfer. To prevent this, servers may pad their files using a padding scheme, changing the file sizes and preventing anyone from guessing their identity uniquely. This work focuses on finding optimal padding schemes that keep a balance between privacy and the costs of bandwidth increase. We consider R\'enyi-min leakage as our main measure for privacy, since it is directly related with the success of a simple attacker, and compare our algorithms with an existing solution that minimizes Shannon leakage. We provide improvements to our algorithms in order to optimize average total padding and Shannon leakage while minimizing R\'enyi-min leakage. Moreover, our algorithms are designed to handle a more general and important scenario in which multiple servers wish to compute padding schemes in a way that protects the servers' identity in addition to the identity of the files.
Forget-free Continual Learning with Soft-Winning SubNetworks
Inspired by Regularized Lottery Ticket Hypothesis (RLTH), which states that competitive smooth (non-binary) subnetworks exist within a dense network in continual learning tasks, we investigate two proposed architecture-based continual learning methods which sequentially learn and select adaptive binary- (WSN) and non-binary Soft-Subnetworks (SoftNet) for each task. WSN and SoftNet jointly learn the regularized model weights and task-adaptive non-binary masks of subnetworks associated with each task whilst attempting to select a small set of weights to be activated (winning ticket) by reusing weights of the prior subnetworks. Our proposed WSN and SoftNet are inherently immune to catastrophic forgetting as each selected subnetwork model does not infringe upon other subnetworks in Task Incremental Learning (TIL). In TIL, binary masks spawned per winning ticket are encoded into one N-bit binary digit mask, then compressed using Huffman coding for a sub-linear increase in network capacity to the number of tasks. Surprisingly, in the inference step, SoftNet generated by injecting small noises to the backgrounds of acquired WSN (holding the foregrounds of WSN) provides excellent forward transfer power for future tasks in TIL. SoftNet shows its effectiveness over WSN in regularizing parameters to tackle the overfitting, to a few examples in Few-shot Class Incremental Learning (FSCIL).
QDNA-ID Quantum Device Native Authentication
QDNA-ID is a trust-chain framework that links physical quantum behavior to digitally verified records. The system first executes standard quantum circuits with random shot patterns across different devices to generate entropy profiles and measurement data that reveal device-specific behavior. A Bell or CHSH test is then used to confirm that correlations originate from genuine non classical processes rather than classical simulation. The verified outcomes are converted into statistical fingerprints using entropy, divergence, and bias features to characterize each device. These features and metadata for device, session, and random seed parameters are digitally signed and time stamped to ensure integrity and traceability. Authenticated artifacts are stored in a hierarchical index for reproducible retrieval and long term auditing. A visualization and analytics interface monitors drift, policy enforcement, and device behavior logs. A machine learning engine tracks entropy drift, detects anomalies, and classifies devices based on evolving patterns. An external verification API supports independent recomputation of hashes, signatures, and CHSH evidence. QDNA-ID operates as a continuous feedback loop that maintains a persistent chain of trust for quantum computing environments.
Unlocking Efficient Large Inference Models: One-Bit Unrolling Tips the Scales
Recent advancements in Large Language Model (LLM) compression, such as BitNet and BitNet b1.58, have marked significant strides in reducing the computational demands of LLMs through innovative one-bit quantization techniques. We extend this frontier by looking at Large Inference Models (LIMs) that have become indispensable across various applications. However, their scale and complexity often come at a significant computational cost. We introduce a novel approach that leverages one-bit algorithm unrolling, effectively integrating information from the physical world in the model architecture. Our method achieves a bit-per-link rate significantly lower than the 1.58 bits reported in prior work, thanks to the natural sparsity that emerges in our network architectures. We numerically demonstrate that the proposed one-bit algorithm unrolling scheme can improve both training and test outcomes by effortlessly increasing the number of layers while substantially compressing the network. Additionally, we provide theoretical results on the generalization gap, convergence rate, stability, and sensitivity of our proposed one-bit algorithm unrolling.
SPoC: Search-based Pseudocode to Code
We consider the task of mapping pseudocode to long programs that are functionally correct. Given test cases as a mechanism to validate programs, we search over the space of possible translations of the pseudocode to find a program that passes the validation. However, without proper credit assignment to localize the sources of program failures, it is difficult to guide search toward more promising programs. We propose to perform credit assignment based on signals from compilation errors, which constitute 88.7% of program failures. Concretely, we treat the translation of each pseudocode line as a discrete portion of the program, and whenever a synthesized program fails to compile, an error localization method tries to identify the portion of the program responsible for the failure. We then focus search over alternative translations of the pseudocode for those portions. For evaluation, we collected the SPoC dataset (Search-based Pseudocode to Code) containing 18,356 programs with human-authored pseudocode and test cases. Under a budget of 100 program compilations, performing search improves the synthesis success rate over using the top-one translation of the pseudocode from 25.6% to 44.7%.
Verifying Properties of Binarized Deep Neural Networks
Understanding properties of deep neural networks is an important challenge in deep learning. In this paper, we take a step in this direction by proposing a rigorous way of verifying properties of a popular class of neural networks, Binarized Neural Networks, using the well-developed means of Boolean satisfiability. Our main contribution is a construction that creates a representation of a binarized neural network as a Boolean formula. Our encoding is the first exact Boolean representation of a deep neural network. Using this encoding, we leverage the power of modern SAT solvers along with a proposed counterexample-guided search procedure to verify various properties of these networks. A particular focus will be on the critical property of robustness to adversarial perturbations. For this property, our experimental results demonstrate that our approach scales to medium-size deep neural networks used in image classification tasks. To the best of our knowledge, this is the first work on verifying properties of deep neural networks using an exact Boolean encoding of the network.
mbrs: A Library for Minimum Bayes Risk Decoding
Minimum Bayes risk (MBR) decoding is a decision rule of text generation tasks that outperforms conventional maximum a posterior (MAP) decoding using beam search by selecting high-quality outputs based on a utility function rather than those with high-probability. Typically, it finds the most suitable hypothesis from the set of hypotheses under the sampled pseudo-references. mbrs is a library of MBR decoding, which can flexibly combine various metrics, alternative expectation estimations, and algorithmic variants. It is designed with a focus on speed measurement and calling count of code blocks, transparency, reproducibility, and extensibility, which are essential for researchers and developers. We published our mbrs as an MIT-licensed open-source project, and the code is available on GitHub. GitHub: https://github.com/naist-nlp/mbrs
Capacity Analysis of Vector Symbolic Architectures
Hyperdimensional computing (HDC) is a biologically-inspired framework which represents symbols with high-dimensional vectors, and uses vector operations to manipulate them. The ensemble of a particular vector space and a prescribed set of vector operations (including one addition-like for "bundling" and one outer-product-like for "binding") form a *vector symbolic architecture* (VSA). While VSAs have been employed in numerous applications and have been studied empirically, many theoretical questions about VSAs remain open. We analyze the *representation capacities* of four common VSAs: MAP-I, MAP-B, and two VSAs based on sparse binary vectors. "Representation capacity' here refers to bounds on the dimensions of the VSA vectors required to perform certain symbolic tasks, such as testing for set membership i in S and estimating set intersection sizes |X cap Y| for two sets of symbols X and Y, to a given degree of accuracy. We also analyze the ability of a novel variant of a Hopfield network (a simple model of associative memory) to perform some of the same tasks that are typically asked of VSAs. In addition to providing new bounds on VSA capacities, our analyses establish and leverage connections between VSAs, "sketching" (dimensionality reduction) algorithms, and Bloom filters.
PERC: Plan-As-Query Example Retrieval for Underrepresented Code Generation
Code generation with large language models has shown significant promise, especially when employing retrieval-augmented generation (RAG) with few-shot examples. However, selecting effective examples that enhance generation quality remains a challenging task, particularly when the target programming language (PL) is underrepresented. In this study, we present two key findings: (1) retrieving examples whose presented algorithmic plans can be referenced for generating the desired behavior significantly improves generation accuracy, and (2) converting code into pseudocode effectively captures such algorithmic plans, enhancing retrieval quality even when the source and the target PLs are different. Based on these findings, we propose Plan-as-query Example Retrieval for few-shot prompting in Code generation (PERC), a novel framework that utilizes algorithmic plans to identify and retrieve effective examples. We validate the effectiveness of PERC through extensive experiments on the CodeContests, HumanEval and MultiPL-E benchmarks: PERC consistently outperforms the state-of-the-art RAG methods in code generation, both when the source and target programming languages match or differ, highlighting its adaptability and robustness in diverse coding environments.
Beyond Language Models: Byte Models are Digital World Simulators
Traditional deep learning often overlooks bytes, the basic units of the digital world, where all forms of information and operations are encoded and manipulated in binary format. Inspired by the success of next token prediction in natural language processing, we introduce bGPT, a model with next byte prediction to simulate the digital world. bGPT matches specialized models in performance across various modalities, including text, audio, and images, and offers new possibilities for predicting, simulating, and diagnosing algorithm or hardware behaviour. It has almost flawlessly replicated the process of converting symbolic music data, achieving a low error rate of 0.0011 bits per byte in converting ABC notation to MIDI format. In addition, bGPT demonstrates exceptional capabilities in simulating CPU behaviour, with an accuracy exceeding 99.99% in executing various operations. Leveraging next byte prediction, models like bGPT can directly learn from vast binary data, effectively simulating the intricate patterns of the digital world.
ParetoQ: Scaling Laws in Extremely Low-bit LLM Quantization
The optimal bit-width for achieving the best trade-off between quantized model size and accuracy has been a subject of ongoing debate. While some advocate for 4-bit quantization, others propose that 1.58-bit offers superior results. However, the lack of a cohesive framework for different bits has left such conclusions relatively tenuous. We present ParetoQ, the first unified framework that facilitates rigorous comparisons across 1-bit, 1.58-bit, 2-bit, 3-bit, and 4-bit quantization settings. Our findings reveal a notable learning transition between 2 and 3 bits: For 3-bits and above, the fine-tuned models stay close to their original pre-trained distributions, whereas for learning 2-bit networks or below, the representations change drastically. By optimizing training schemes and refining quantization functions, ParetoQ surpasses all previous methods tailored to specific bit widths. Remarkably, our ParetoQ ternary 600M-parameter model even outperforms the previous SoTA ternary 3B-parameter model in accuracy, using only one-fifth of the parameters. Extensive experimentation shows that ternary, 2-bit, and 3-bit quantization maintains comparable performance in the size-accuracy trade-off and generally exceeds 4-bit and binary quantization. Considering hardware constraints, 2-bit quantization offers promising potential for memory reduction and speedup.
LLMZip: Lossless Text Compression using Large Language Models
We provide new estimates of an asymptotic upper bound on the entropy of English using the large language model LLaMA-7B as a predictor for the next token given a window of past tokens. This estimate is significantly smaller than currently available estimates in cover1978convergent, lutati2023focus. A natural byproduct is an algorithm for lossless compression of English text which combines the prediction from the large language model with a lossless compression scheme. Preliminary results from limited experiments suggest that our scheme outperforms state-of-the-art text compression schemes such as BSC, ZPAQ, and paq8h.
Dual-Layer Video Encryption using RSA Algorithm
This paper proposes a video encryption algorithm using RSA and Pseudo Noise (PN) sequence, aimed at applications requiring sensitive video information transfers. The system is primarily designed to work with files encoded using the Audio Video Interleaved (AVI) codec, although it can be easily ported for use with Moving Picture Experts Group (MPEG) encoded files. The audio and video components of the source separately undergo two layers of encryption to ensure a reasonable level of security. Encryption of the video component involves applying the RSA algorithm followed by the PN-based encryption. Similarly, the audio component is first encrypted using PN and further subjected to encryption using the Discrete Cosine Transform. Combining these techniques, an efficient system, invulnerable to security breaches and attacks with favorable values of parameters such as encryption/decryption speed, encryption/decryption ratio and visual degradation; has been put forth. For applications requiring encryption of sensitive data wherein stringent security requirements are of prime concern, the system is found to yield negligible similarities in visual perception between the original and the encrypted video sequence. For applications wherein visual similarity is not of major concern, we limit the encryption task to a single level of encryption which is accomplished by using RSA, thereby quickening the encryption process. Although some similarity between the original and encrypted video is observed in this case, it is not enough to comprehend the happenings in the video.
BinaryDM: Towards Accurate Binarization of Diffusion Model
With the advancement of diffusion models (DMs) and the substantially increased computational requirements, quantization emerges as a practical solution to obtain compact and efficient low-bit DMs. However, the highly discrete representation leads to severe accuracy degradation, hindering the quantization of diffusion models to ultra-low bit-widths. In this paper, we propose BinaryDM, a novel accurate quantization-aware training approach to push the weights of diffusion models towards the limit of 1-bit. Firstly, we present a Learnable Multi-basis Binarizer (LMB) to recover the representations generated by the binarized DM, which improves the information in details of representations crucial to the DM. Secondly, a Low-rank Representation Mimicking (LRM) is applied to enhance the binarization-aware optimization of the DM, alleviating the optimization direction ambiguity caused by fine-grained alignment. Moreover, a progressive initialization strategy is applied to training DMs to avoid convergence difficulties. Comprehensive experiments demonstrate that BinaryDM achieves significant accuracy and efficiency gains compared to SOTA quantization methods of DMs under ultra-low bit-widths. As the first binarization method for diffusion models, BinaryDM achieves impressive 16.0 times FLOPs and 27.1 times storage savings with 1-bit weight and 4-bit activation, showcasing its substantial advantages and potential for deploying DMs on resource-limited scenarios.
ProSec: Fortifying Code LLMs with Proactive Security Alignment
While recent code-specific large language models (LLMs) have greatly enhanced their code generation capabilities, the safety of these models remains under-explored, posing potential risks as insecure code generated by these models may introduce vulnerabilities into real-world systems. Existing methods collect security-focused datasets from real-world vulnerabilities for instruction tuning in order to mitigate such issues. However, they are largely constrained by the data sparsity of vulnerable code, and have limited applicability in the multi-stage post-training workflows of modern LLMs. In this paper, we propose ProSec, a novel proactive security alignment approach designed to align code LLMs with secure coding practices. ProSec systematically exposes the vulnerabilities in a code LLM by synthesizing vulnerability-inducing coding scenarios from Common Weakness Enumerations (CWEs) and generates fixes to vulnerable code snippets, allowing the model to learn secure practices through preference learning objectives. The scenarios synthesized by ProSec trigger 25x more vulnerable code than a normal instruction-tuning dataset, resulting in a security-focused alignment dataset 7x larger than the previous work. Experiments show that models trained with ProSec are 25.2% to 35.4% more secure compared to previous work without degrading models' utility.
HyperAttention: Long-context Attention in Near-Linear Time
We present an approximate attention mechanism named HyperAttention to address the computational challenges posed by the growing complexity of long contexts used in Large Language Models (LLMs). Recent work suggests that in the worst-case scenario, quadratic time is necessary unless the entries of the attention matrix are bounded or the matrix has low stable rank. We introduce two parameters which measure: (1) the max column norm in the normalized attention matrix, and (2) the ratio of row norms in the unnormalized attention matrix after detecting and removing large entries. We use these fine-grained parameters to capture the hardness of the problem. Despite previous lower bounds, we are able to achieve a linear time sampling algorithm even when the matrix has unbounded entries or a large stable rank, provided the above parameters are small. HyperAttention features a modular design that easily accommodates integration of other fast low-level implementations, particularly FlashAttention. Empirically, employing Locality Sensitive Hashing (LSH) to identify large entries, HyperAttention outperforms existing methods, giving significant speed improvements compared to state-of-the-art solutions like FlashAttention. We validate the empirical performance of HyperAttention on a variety of different long-context length datasets. For example, HyperAttention makes the inference time of ChatGLM2 50\% faster on 32k context length while perplexity increases from 5.6 to 6.3. On larger context length, e.g., 131k, with causal masking, HyperAttention offers 5-fold speedup on a single attention layer.
Searching by Code: a New SearchBySnippet Dataset and SnippeR Retrieval Model for Searching by Code Snippets
Code search is an important task that has seen many developments in recent years. However, previous attempts have mostly considered the problem of searching for code by a text query. We argue that using a code snippet (and possibly an associated traceback) as a query and looking for answers with bugfixing instructions and code samples is a natural use case that is not covered by existing approaches. Moreover, existing datasets use comments extracted from code rather than full-text descriptions as text, making them unsuitable for this use case. We present a new SearchBySnippet dataset implementing the search-by-code use case based on StackOverflow data; it turns out that in this setting, existing architectures fall short of the simplest BM25 baseline even after fine-tuning. We present a new single encoder model SnippeR that outperforms several strong baselines on the SearchBySnippet dataset with a result of 0.451 Recall@10; we propose the SearchBySnippet dataset and SnippeR as a new important benchmark for code search evaluation.
Majority Bit-Aware Watermarking For Large Language Models
The growing deployment of Large Language Models (LLMs) in real-world applications has raised concerns about their potential misuse in generating harmful or deceptive content. To address this issue, watermarking techniques have emerged as a promising solution by embedding identifiable binary messages into generated text for origin verification and misuse tracing. While recent efforts have explored multi-bit watermarking schemes capable of embedding rich information such as user identifiers, they typically suffer from the fundamental trade-off between text quality and decoding accuracy: to ensure reliable message decoding, they have to restrict the size of preferred token sets during encoding, yet such restrictions reduce the quality of the generated content. In this work, we propose MajorMark, a novel watermarking method that improves this trade-off through majority bit-aware encoding. MajorMark selects preferred token sets based on the majority bit of the message, enabling a larger and more flexible sampling of tokens. In contrast to prior methods that rely on token frequency analysis for decoding, MajorMark employs a clustering-based decoding strategy, which maintains high decoding accuracy even when the preferred token set is large, thus preserving both content quality and decoding accuracy. We further introduce MajorMark^+, which partitions the message into multiple blocks to independently encode and deterministically decode each block, thereby further enhancing the quality of watermarked text and improving decoding accuracy. Extensive experiments on state-of-the-art LLMs demonstrate that our methods significantly enhance both decoding accuracy and text generation quality, outperforming prior multi-bit watermarking baselines.
BitMoD: Bit-serial Mixture-of-Datatype LLM Acceleration
Large language models (LLMs) have demonstrated remarkable performance across various machine learning tasks. Yet the substantial memory footprint of LLMs significantly hinders their deployment. In this paper, we improve the accessibility of LLMs through BitMoD, an algorithm-hardware co-design solution that enables efficient LLM acceleration at low weight precision. On the algorithm side, BitMoD introduces fine-grained data type adaptation that uses a different numerical data type to quantize a group of (e.g., 128) weights. Through the careful design of these new data types, BitMoD is able to quantize LLM weights to very low precision (e.g., 4 bits and 3 bits) while maintaining high accuracy. On the hardware side, BitMoD employs a bit-serial processing element to easily support multiple numerical precisions and data types; our hardware design includes two key innovations: First, it employs a unified representation to process different weight data types, thus reducing the hardware cost. Second, it adopts a bit-serial dequantization unit to rescale the per-group partial sum with minimal hardware overhead. Our evaluation on six representative LLMs demonstrates that BitMoD significantly outperforms state-of-the-art LLM quantization and acceleration methods. For discriminative tasks, BitMoD can quantize LLM weights to 4-bit with <!0.5% accuracy loss on average. For generative tasks, BitMoD is able to quantize LLM weights to 3-bit while achieving better perplexity than prior LLM quantization scheme. Combining the superior model performance with an efficient accelerator design, BitMoD achieves an average of 1.69times and 1.48times speedups compared to prior LLM accelerators ANT and OliVe, respectively.
Leuvenshtein: Efficient FHE-based Edit Distance Computation with Single Bootstrap per Cell
This paper presents a novel approach to calculating the Levenshtein (edit) distance within the framework of Fully Homomorphic Encryption (FHE), specifically targeting third-generation schemes like TFHE. Edit distance computations are essential in applications across finance and genomics, such as DNA sequence alignment. We introduce an optimised algorithm that significantly reduces the cost of edit distance calculations called Leuvenshtein. This algorithm specifically reduces the number of programmable bootstraps (PBS) needed per cell of the calculation, lowering it from approximately 94 operations -- required by the conventional Wagner-Fisher algorithm -- to just 1. Additionally, we propose an efficient method for performing equality checks on characters, reducing ASCII character comparisons to only 2 PBS operations. Finally, we explore the potential for further performance improvements by utilising preprocessing when one of the input strings is unencrypted. Our Leuvenshtein achieves up to 278times faster performance compared to the best available TFHE implementation and up to 39times faster than an optimised implementation of the Wagner-Fisher algorithm. Moreover, when offline preprocessing is possible due to the presence of one unencrypted input on the server side, an additional 3times speedup can be achieved.
A&B BNN: Add&Bit-Operation-Only Hardware-Friendly Binary Neural Network
Binary neural networks utilize 1-bit quantized weights and activations to reduce both the model's storage demands and computational burden. However, advanced binary architectures still incorporate millions of inefficient and nonhardware-friendly full-precision multiplication operations. A&B BNN is proposed to directly remove part of the multiplication operations in a traditional BNN and replace the rest with an equal number of bit operations, introducing the mask layer and the quantized RPReLU structure based on the normalizer-free network architecture. The mask layer can be removed during inference by leveraging the intrinsic characteristics of BNN with straightforward mathematical transformations to avoid the associated multiplication operations. The quantized RPReLU structure enables more efficient bit operations by constraining its slope to be integer powers of 2. Experimental results achieved 92.30%, 69.35%, and 66.89% on the CIFAR-10, CIFAR-100, and ImageNet datasets, respectively, which are competitive with the state-of-the-art. Ablation studies have verified the efficacy of the quantized RPReLU structure, leading to a 1.14% enhancement on the ImageNet compared to using a fixed slope RLeakyReLU. The proposed add&bit-operation-only BNN offers an innovative approach for hardware-friendly network architecture.
BAQ: Efficient Bit Allocation Quantization for Large Language Models
Post-training model quantization is a widely adopted technique for reducing the memory and computational costs of large language models (LLMs). However, most existing methods rely on uniform or heuristic bitwidth assignments, failing to account for the nonuniform sensitivity of weights to quantization noise. In this paper, we propose a novel framework for allocating quantization bitwidths based on sensitivity metrics derived from a Hessian proxy. We make key assumptions, which allow the layer/component-wise loss function to be expressed as an explicit function of the bitwidths. This enables a neat formulation of the bit allocation problem as a convex optimization task, whose closed-form solution adapts precision across weights to minimize the layer-wise quantization loss. Inspecting the solution provides several insights (such as the equal-loss structure), which are then exploited to design the proposed BAQ (Bit Allocation Quantization) algorithm. The proposed algorithm achieves a good trade-off between loss minimization and complexity and allows BAQ to be integrated into standard quantization pipelines with minimal overhead. Experimental results show that BAQ consistently outperforms GPTQ, achieving up to 56times lower perplexity at the same bitwidth on large language models ranging from 125M to 30B parameters. Leveraging our analytical results derived from solving the optimal bit allocation problem, we also provide a theoretical explanation for the observed gains. All codes of this paper are available at https://github.com/CSU-ModelCompression/BAQ.
Learning Binary Autoencoder-Based Codes with Progressive Training
Error correcting codes play a central role in digital communication, ensuring that transmitted information can be accurately reconstructed despite channel impairments. Recently, autoencoder (AE) based approaches have gained attention for the end-to-end design of communication systems, offering a data driven alternative to conventional coding schemes. However, enforcing binary codewords within differentiable AE architectures remains difficult, as discretization breaks gradient flow and often leads to unstable convergence. To overcome this limitation, a simplified two stage training procedure is proposed, consisting of a continuous pretraining phase followed by direct binarization and fine tuning without gradient approximation techniques. For the (7,4) block configuration over a binary symmetric channel (BSC), the learned encoder-decoder pair learns a rotated version (coset code) of the optimal Hamming code, naturally recovering its linear and distance properties and thereby achieving the same block error rate (BLER) with maximum likelihood (ML) decoding. These results indicate that compact AE architectures can effectively learn structured, algebraically optimal binary codes through stable and straightforward training.
Verifiable Fully Homomorphic Encryption
Fully Homomorphic Encryption (FHE) is seeing increasing real-world deployment to protect data in use by allowing computation over encrypted data. However, the same malleability that enables homomorphic computations also raises integrity issues, which have so far been mostly overlooked. While FHEs lack of integrity has obvious implications for correctness, it also has severe implications for confidentiality: a malicious server can leverage the lack of integrity to carry out interactive key-recovery attacks. As a result, virtually all FHE schemes and applications assume an honest-but-curious server who does not deviate from the protocol. In practice, however, this assumption is insufficient for a wide range of deployment scenarios. While there has been work that aims to address this gap, these have remained isolated efforts considering only aspects of the overall problem and fail to fully address the needs and characteristics of modern FHE schemes and applications. In this paper, we analyze existing FHE integrity approaches, present attacks that exploit gaps in prior work, and propose a new notion for maliciously-secure verifiable FHE. We then instantiate this new notion with a range of techniques, analyzing them and evaluating their performance in a range of different settings. We highlight their potential but also show where future work on tailored integrity solutions for FHE is still required.
TOPLOC: A Locality Sensitive Hashing Scheme for Trustless Verifiable Inference
Large language models (LLMs) have proven to be very capable, but access to the best models currently rely on inference providers which introduces trust challenges -- how can we be sure that the provider is using the model configuration they claim? We propose TOPLOC, a novel method for verifiable inference that addresses this problem. TOPLOC leverages a compact locality sensitive hashing mechanism for intermediate activations which can detect unauthorized modifications to models, prompts, or precision with 100% accuracy, achieving no false positives or negatives in our empirical evaluations. Our approach is robust across diverse hardware configurations, GPU types, and algebraic reorderings, which allows for validation speeds significantly faster than the original inference. By introducing a polynomial encoding scheme, TOPLOC minimizes memory overhead of the generated commits by 1000times, requiring only 258 bytes of storage per 32 new tokens compared to the 262KB requirement of storing the token embeddings directly for Llama-3.1-8B-Instruct. Our method empowers users to verify LLM inference computations efficiently, fostering greater trust and transparency in open ecosystems and lays a foundation for decentralized and verifiable AI services.
SEAL: Semantic Aware Image Watermarking
Generative models have rapidly evolved to generate realistic outputs. However, their synthetic outputs increasingly challenge the clear distinction between natural and AI-generated content, necessitating robust watermarking techniques. Watermarks are typically expected to preserve the integrity of the target image, withstand removal attempts, and prevent unauthorized replication onto unrelated images. To address this need, recent methods embed persistent watermarks into images produced by diffusion models using the initial noise. Yet, to do so, they either distort the distribution of generated images or rely on searching through a long dictionary of used keys for detection. In this paper, we propose a novel watermarking method that embeds semantic information about the generated image directly into the watermark, enabling a distortion-free watermark that can be verified without requiring a database of key patterns. Instead, the key pattern can be inferred from the semantic embedding of the image using locality-sensitive hashing. Furthermore, conditioning the watermark detection on the original image content improves robustness against forgery attacks. To demonstrate that, we consider two largely overlooked attack strategies: (i) an attacker extracting the initial noise and generating a novel image with the same pattern; (ii) an attacker inserting an unrelated (potentially harmful) object into a watermarked image, possibly while preserving the watermark. We empirically validate our method's increased robustness to these attacks. Taken together, our results suggest that content-aware watermarks can mitigate risks arising from image-generative models.
Sharp Noisy Binary Search with Monotonic Probabilities
We revisit the noisy binary search model of Karp and Kleinberg, in which we have n coins with unknown probabilities p_i that we can flip. The coins are sorted by increasing p_i, and we would like to find where the probability crosses (to within varepsilon) of a target value tau. This generalized the fixed-noise model of Burnashev and Zigangirov , in which p_i = 1{2} pm varepsilon, to a setting where coins near the target may be indistinguishable from it. Karp and Kleinberg showed that Theta(1{varepsilon^2} log n) samples are necessary and sufficient for this task. We produce a practical algorithm by solving two theoretical challenges: high-probability behavior and sharp constants. We give an algorithm that succeeds with probability 1-delta from \[ 1{C_{\tau, \varepsilon}} \cdot \left(\lg n + O(\log^{2/3} n \log^{1/3} 1{\delta} + \log 1{\delta})\right) \] samples, where C_{tau, varepsilon} is the optimal such constant achievable. For delta > n^{-o(1)} this is within 1 + o(1) of optimal, and for delta ll 1 it is the first bound within constant factors of optimal.
Bitnet.cpp: Efficient Edge Inference for Ternary LLMs
The advent of 1-bit large language models (LLMs), led by BitNet b1.58, has spurred interest in ternary LLMs. Despite this, research and practical applications focusing on efficient edge inference for ternary LLMs remain scarce. To bridge this gap, we introduce Bitnet.cpp, an inference system optimized for BitNet b1.58 and ternary LLMs. Given that mixed-precision matrix multiplication (mpGEMM) constitutes the bulk of inference time in ternary LLMs, Bitnet.cpp incorporates a novel mpGEMM library to facilitate sub-2-bits-per-weight, efficient and lossless inference. The library features two core solutions: Ternary Lookup Table (TL), which addresses spatial inefficiencies of previous bit-wise methods, and Int2 with a Scale (I2_S), which ensures lossless edge inference, both enabling high-speed inference. Our experiments show that Bitnet.cpp achieves up to a 6.25x increase in speed over full-precision baselines and up to 2.32x over low-bit baselines, setting new benchmarks in the field. Additionally, we expand TL to element-wise lookup table (ELUT) for low-bit LLMs in the appendix, presenting both theoretical and empirical evidence of its considerable potential. Bitnet.cpp is publicly available at https://github.com/microsoft/BitNet/tree/paper , offering a sophisticated solution for the efficient and practical deployment of edge LLMs.
Robust Camera Pose Refinement for Multi-Resolution Hash Encoding
Multi-resolution hash encoding has recently been proposed to reduce the computational cost of neural renderings, such as NeRF. This method requires accurate camera poses for the neural renderings of given scenes. However, contrary to previous methods jointly optimizing camera poses and 3D scenes, the naive gradient-based camera pose refinement method using multi-resolution hash encoding severely deteriorates performance. We propose a joint optimization algorithm to calibrate the camera pose and learn a geometric representation using efficient multi-resolution hash encoding. Showing that the oscillating gradient flows of hash encoding interfere with the registration of camera poses, our method addresses the issue by utilizing smooth interpolation weighting to stabilize the gradient oscillation for the ray samplings across hash grids. Moreover, the curriculum training procedure helps to learn the level-wise hash encoding, further increasing the pose refinement. Experiments on the novel-view synthesis datasets validate that our learning frameworks achieve state-of-the-art performance and rapid convergence of neural rendering, even when initial camera poses are unknown.
SCReedSolo: A Secure and Robust LSB Image Steganography Framework with Randomized Symmetric Encryption and Reed-Solomon Coding
Image steganography is an information-hiding technique that involves the surreptitious concealment of covert informational content within digital images. In this paper, we introduce {rm SCR{small EED}S{small OLO}}, a novel framework for concealing arbitrary binary data within images. Our approach synergistically leverages Random Shuffling, Fernet Symmetric Encryption, and Reed-Solomon Error Correction Codes to encode the secret payload, which is then discretely embedded into the carrier image using LSB (Least Significant Bit) Steganography. The combination of these methods addresses the vulnerability vectors of both security and resilience against bit-level corruption in the resultant stego-images. We show that our framework achieves a data payload of 3 bits per pixel for an RGB image, and mathematically assess the probability of successful transmission for the amalgamated n message bits and k error correction bits. Additionally, we find that {rm SCR{small EED}S{small OLO}} yields good results upon being evaluated with multiple performance metrics, successfully eludes detection by various passive steganalysis tools, and is immune to simple active steganalysis attacks. Our code and data are available at https://github.com/Starscream-11813/SCReedSolo-Steganography.
Code Completion using Neural Attention and Byte Pair Encoding
In this paper, we aim to do code completion based on implementing a Neural Network from Li et. al.. Our contribution is that we use an encoding that is in-between character and word encoding called Byte Pair Encoding (BPE). We use this on the source code files treating them as natural text without first going through the abstract syntax tree (AST). We have implemented two models: an attention-enhanced LSTM and a pointer network, where the pointer network was originally introduced to solve out of vocabulary problems. We are interested to see if BPE can replace the need for the pointer network for code completion.
Fast Matrix Multiplication via Ternary Meta Flip Graphs
Matrix multiplication optimization remains a fundamental challenge in computational mathematics. This work introduces a novel approach that discovers matrix multiplication schemes in the ternary field (Z_T), where coefficients are restricted to {-1, 0, 1} to minimize naive additive complexity. The core of the method is a GPU-accelerated meta flip graph algorithm that maintains ternary safety through specialized arithmetic operations and sign symmetry breaking. Key results include new best ranks for the formats 4 times 5 times 12, 5 times 6 times 10, and 6 times 7 times 9, the independent discovery of 32 schemes in Z_T that match known optimal ranks (including 8 previously known only with rational coefficients), and 30 rank improvements in the binary field. The analysis of 164 known schemes shows that 92 can be implemented in Z_T, while 72 could not be found in the ternary field with current methods, defining the current boundaries of this approach. All software, results, and discovered schemes are provided as open-source.
The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits
Recent research, such as BitNet, is paving the way for a new era of 1-bit Large Language Models (LLMs). In this work, we introduce a 1-bit LLM variant, namely BitNet b1.58, in which every single parameter (or weight) of the LLM is ternary {-1, 0, 1}. It matches the full-precision (i.e., FP16 or BF16) Transformer LLM with the same model size and training tokens in terms of both perplexity and end-task performance, while being significantly more cost-effective in terms of latency, memory, throughput, and energy consumption. More profoundly, the 1.58-bit LLM defines a new scaling law and recipe for training new generations of LLMs that are both high-performance and cost-effective. Furthermore, it enables a new computation paradigm and opens the door for designing specific hardware optimized for 1-bit LLMs.
Compressed Real Numbers for AI: a case-study using a RISC-V CPU
As recently demonstrated, Deep Neural Networks (DNN), usually trained using single precision IEEE 754 floating point numbers (binary32), can also work using lower precision. Therefore, 16-bit and 8-bit compressed format have attracted considerable attention. In this paper, we focused on two families of formats that have already achieved interesting results in compressing binary32 numbers in machine learning applications, without sensible degradation of the accuracy: bfloat and posit. Even if 16-bit and 8-bit bfloat/posit are routinely used for reducing the storage of the weights/biases of trained DNNs, the inference still often happens on the 32-bit FPU of the CPU (especially if GPUs are not available). In this paper we propose a way to decompress a tensor of bfloat/posits just before computations, i.e., after the compressed operands have been loaded within the vector registers of a vector capable CPU, in order to save bandwidth usage and increase cache efficiency. Finally, we show the architectural parameters and considerations under which this solution is advantageous with respect to the uncompressed one.
any4: Learned 4-bit Numeric Representation for LLMs
We present any4, a learned 4-bit weight quantization solution for large language models (LLMs) providing arbitrary numeric representations without requiring pre-processing of weights or activations. any4 yields higher accuracy compared to other related 4-bit numeric representation types: int4, fp4 and nf4, as evaluated on a range of model sizes, generations and families (Llama 2, Llama 3, Mistral and Mixtral). While any4 does not require preprocessing of weights or activations, it is also competitive with orthogonal techniques that require such preprocessing (e.g., AWQ and GPTQ). We also experiment with any3 and any2 and show competitiveness at lower bits. Additionally, we show that we can calibrate using a single curated diverse sample rather than hundreds of samples from a dataset as done in most quantization approaches. We also open source tinygemm, a latency optimized GPU matrix multiplication library for LLMs, that implements any4 using a GPU-efficient lookup table strategy along with other common quantization methods. We open source our code at https://github.com/facebookresearch/any4 .
