12 Decomposed Attention Fusion in MLLMs for Training-Free Video Reasoning Segmentation Multimodal large language models (MLLMs) demonstrate strong video understanding by attending to visual tokens relevant to textual queries. To directly adapt this for localization in a training-free manner, we cast video reasoning segmentation as a video QA task and extract attention maps via rollout mechanism. However, raw attention maps are noisy and poorly aligned with object regions. We propose Decomposed Attention Fusion (DecAF), which refines these maps through two mechanisms: (1) contrastive object-background fusion and (2) complementary video-frame fusion. This method suppresses irrelevant activations and enhances object-focused cues, enabling direct conversion of attention maps into coarse segmentation masks. In addition, we introduce attention-guided SAM2 prompting for obtaining fine-grained masks. Unlike existing methods that jointly train MLLMs with SAM, our method operates entirely without retraining. DecAF outperforms training-free methods and achieves performance comparable to training-based methods on both referring and reasoning VOS benchmarks. The code will be available at https://github.com/HYUNJS/DecAF. 6 authors · Oct 22, 2025 2
1 GAID: Frame-Level Gated Audio-Visual Integration with Directional Perturbation for Text-Video Retrieval Text-to-video retrieval requires precise alignment between language and temporally rich video signals. Existing methods predominantly exploit visual cues and often overlook complementary audio semantics or adopt coarse fusion strategies, leading to suboptimal multimodal representations. We present GAID, a framework that jointly address this gap via two key components: (i) a Frame-level Gated Fusion (FGF) that adaptively integrates audio and visual features under textual guidance, enabling fine-grained temporal alignment; and (ii) a Directional Adaptive Semantic Perturbation (DASP) that injects structure-aware perturbations into text embeddings, enhancing robustness and discrimination without incurring multi-pass inference. These modules complement each other -- fusion reduces modality gaps while perturbation regularizes cross-modal matching -- yielding more stable and expressive representations. Extensive experiments on MSR-VTT, DiDeMo, LSMDC, and VATEX show consistent state-of-the-art results across all retrieval metrics with notable efficiency gains. Our code is available at https://github.com/YangBowenn/GAID. 4 authors · Aug 3, 2025