new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 16

How to Handle Different Types of Out-of-Distribution Scenarios in Computational Argumentation? A Comprehensive and Fine-Grained Field Study

The advent of pre-trained Language Models (LMs) has markedly advanced natural language processing, but their efficacy in out-of-distribution (OOD) scenarios remains a significant challenge. Computational argumentation (CA), modeling human argumentation processes, is a field notably impacted by these challenges because complex annotation schemes and high annotation costs naturally lead to resources barely covering the multiplicity of available text sources and topics. Due to this data scarcity, generalization to data from uncovered covariant distributions is a common challenge for CA tasks like stance detection or argument classification. This work systematically assesses LMs' capabilities for such OOD scenarios. While previous work targets specific OOD types like topic shifts or OOD uniformly, we address three prevalent OOD scenarios in CA: topic shift, domain shift, and language shift. Our findings challenge the previously asserted general superiority of in-context learning (ICL) for OOD. We find that the efficacy of such learning paradigms varies with the type of OOD. Specifically, while ICL excels for domain shifts, prompt-based fine-tuning surpasses for topic shifts. To sum up, we navigate the heterogeneity of OOD scenarios in CA and empirically underscore the potential of base-sized LMs in overcoming these challenges.

  • 3 authors
·
Sep 15, 2023

One-shot manipulation of coherence in dynamic quantum resource theory

A fundamental problem in quantum information is to understand the operational significance of quantum resources. Quantum resource theories (QRTs) provide a powerful theoretical framework that aids in analyzing and comprehending the operational meaning of these resources. Early resource theories primarily focused on analyzing static quantum resources. Recently, there has been growing interest in the study of dynamic quantum resources. In this paper, we utilize superchannel theory to describe the dynamic resource theory of quantum coherence. In this dynamic resource theory, we treat classical channels as free channels and consider two classes of free superchannels that preserve channel incoherence (maximally incoherent superchannels (MISC) and dephasing-covariant incoherent superchannels (DISC)) as free resources. We regard the quantum Fourier transform as the golden unit of dynamic coherence resources. We first establish the one-shot theory of dynamic coherence cost and dynamic coherence distillation, which involves converting the quantum Fourier transform into an arbitrary quantum channel using MISC and DISC. Next, we introduce a class of free superchannels known as δ-MISC, which asymptotically generate negligible dynamic coherence. Finally, we provide upper and lower bounds for the one-shot catalytic dynamic coherence cost of quantum channels under the action of these δ-MISC superchannels.

  • 1 authors
·
Feb 13, 2025