- Diff-Foley: Synchronized Video-to-Audio Synthesis with Latent Diffusion Models The Video-to-Audio (V2A) model has recently gained attention for its practical application in generating audio directly from silent videos, particularly in video/film production. However, previous methods in V2A have limited generation quality in terms of temporal synchronization and audio-visual relevance. We present Diff-Foley, a synchronized Video-to-Audio synthesis method with a latent diffusion model (LDM) that generates high-quality audio with improved synchronization and audio-visual relevance. We adopt contrastive audio-visual pretraining (CAVP) to learn more temporally and semantically aligned features, then train an LDM with CAVP-aligned visual features on spectrogram latent space. The CAVP-aligned features enable LDM to capture the subtler audio-visual correlation via a cross-attention module. We further significantly improve sample quality with `double guidance'. Diff-Foley achieves state-of-the-art V2A performance on current large scale V2A dataset. Furthermore, we demonstrate Diff-Foley practical applicability and generalization capabilities via downstream finetuning. Project Page: see https://diff-foley.github.io/ 4 authors · Jun 29, 2023 1
7 Audio Conditioning for Music Generation via Discrete Bottleneck Features While most music generation models use textual or parametric conditioning (e.g. tempo, harmony, musical genre), we propose to condition a language model based music generation system with audio input. Our exploration involves two distinct strategies. The first strategy, termed textual inversion, leverages a pre-trained text-to-music model to map audio input to corresponding "pseudowords" in the textual embedding space. For the second model we train a music language model from scratch jointly with a text conditioner and a quantized audio feature extractor. At inference time, we can mix textual and audio conditioning and balance them thanks to a novel double classifier free guidance method. We conduct automatic and human studies that validates our approach. We will release the code and we provide music samples on https://musicgenstyle.github.io in order to show the quality of our model. 5 authors · Jul 17, 2024 2
- Double: Breaking the Acceleration Limit via Double Retrieval Speculative Parallelism Parallel Speculative Decoding (PSD) accelerates traditional Speculative Decoding (SD) by overlapping draft generation with verification. However, it remains hampered by two fundamental challenges: (1) a theoretical speedup ceiling dictated by the speed ratio between the draft and target models, and (2) high computational waste and pipeline stall due to mid-sequence token rejections of early errors. To address these limitations, we introduce Double (Double Retrieval Speculative Parallelism). By bridging the gap between SD and PSD, our framework resolves the Retrieval Precision-Efficiency Dilemma through a novel synchronous mechanism. Specifically, we enable the draft model to execute iterative retrieval speculations to break the theoretical speedup limits; to alleviate rejections without rollback, the target model performs authoritative retrieval to generate multi-token guidance. Double is entirely training-free and lossless. Extensive experiments demonstrate state-of-the-art speedup of 5.3times on LLaMA3.3-70B and 2.8times on Qwen3-32B, significantly outperforming the advanced method EAGLE-3 that requires extensive model training. 7 authors · Jan 8
- DreamVideo: High-Fidelity Image-to-Video Generation with Image Retention and Text Guidance Image-to-video generation, which aims to generate a video starting from a given reference image, has drawn great attention. Existing methods try to extend pre-trained text-guided image diffusion models to image-guided video generation models. Nevertheless, these methods often result in either low fidelity or flickering over time due to their limitation to shallow image guidance and poor temporal consistency. To tackle these problems, we propose a high-fidelity image-to-video generation method by devising a frame retention branch based on a pre-trained video diffusion model, named DreamVideo. Instead of integrating the reference image into the diffusion process at a semantic level, our DreamVideo perceives the reference image via convolution layers and concatenates the features with the noisy latents as model input. By this means, the details of the reference image can be preserved to the greatest extent. In addition, by incorporating double-condition classifier-free guidance, a single image can be directed to videos of different actions by providing varying prompt texts. This has significant implications for controllable video generation and holds broad application prospects. We conduct comprehensive experiments on the public dataset, and both quantitative and qualitative results indicate that our method outperforms the state-of-the-art method. Especially for fidelity, our model has a powerful image retention ability and delivers the best results in UCF101 compared to other image-to-video models to our best knowledge. Also, precise control can be achieved by giving different text prompts. Further details and comprehensive results of our model will be presented in https://anonymous0769.github.io/DreamVideo/. 6 authors · Dec 4, 2023
- Guidance Source Matters: How Guidance from AI, Expert, or a Group of Analysts Impacts Visual Data Preparation and Analysis The progress in generative AI has fueled AI-powered tools like co-pilots and assistants to provision better guidance, particularly during data analysis. However, research on guidance has not yet examined the perceived efficacy of the source from which guidance is offered and the impact of this source on the user's perception and usage of guidance. We ask whether users perceive all guidance sources as equal, with particular interest in three sources: (i) AI, (ii) human expert, and (iii) a group of human analysts. As a benchmark, we consider a fourth source, (iv) unattributed guidance, where guidance is provided without attribution to any source, enabling isolation of and comparison with the effects of source-specific guidance. We design a five-condition between-subjects study, with one condition for each of the four guidance sources and an additional (v) no-guidance condition, which serves as a baseline to evaluate the influence of any kind of guidance. We situate our study in a custom data preparation and analysis tool wherein we task users to select relevant attributes from an unfamiliar dataset to inform a business report. Depending on the assigned condition, users can request guidance, which the system then provides in the form of attribute suggestions. To ensure internal validity, we control for the quality of guidance across source-conditions. Through several metrics of usage and perception, we statistically test five preregistered hypotheses and report on additional analysis. We find that the source of guidance matters to users, but not in a manner that matches received wisdom. For instance, users utilize guidance differently at various stages of analysis, including expressing varying levels of regret, despite receiving guidance of similar quality. Notably, users in the AI condition reported both higher post-task benefit and regret. 3 authors · Feb 2, 2025
14 Applying Guidance in a Limited Interval Improves Sample and Distribution Quality in Diffusion Models Guidance is a crucial technique for extracting the best performance out of image-generating diffusion models. Traditionally, a constant guidance weight has been applied throughout the sampling chain of an image. We show that guidance is clearly harmful toward the beginning of the chain (high noise levels), largely unnecessary toward the end (low noise levels), and only beneficial in the middle. We thus restrict it to a specific range of noise levels, improving both the inference speed and result quality. This limited guidance interval improves the record FID in ImageNet-512 significantly, from 1.81 to 1.40. We show that it is quantitatively and qualitatively beneficial across different sampler parameters, network architectures, and datasets, including the large-scale setting of Stable Diffusion XL. We thus suggest exposing the guidance interval as a hyperparameter in all diffusion models that use guidance. 6 authors · Apr 11, 2024 1
- Search for or Navigate to? Dual Adaptive Thinking for Object Navigation "Search for" or "Navigate to"? When finding an object, the two choices always come up in our subconscious mind. Before seeing the target, we search for the target based on experience. After seeing the target, we remember the target location and navigate to. However, recently methods in object navigation field almost only consider using object association to enhance "search for" phase while neglect the importance of "navigate to" phase. Therefore, this paper proposes the dual adaptive thinking (DAT) method to flexibly adjust the different thinking strategies at different navigation stages. Dual thinking includes search thinking with the object association ability and navigation thinking with the target location ability. To make the navigation thinking more effective, we design the target-oriented memory graph (TOMG) to store historical target information and the target-aware multi-scale aggregator (TAMSA) to encode the relative target position. We assess our methods on the AI2-Thor dataset. Compared with the state-of-the-art (SOTA) method, our method reports 10.8%, 21.5% and 15.7% increase in success rate (SR), success weighted by path length (SPL) and success weighted by navigation efficiency (SNE), respectively. 6 authors · Jul 31, 2022
- Detecting eclipsing double white dwarfs with electromagnetic and gravitational waves Galactic double white dwarfs are predominant sources of gravitational waves in the millihertz frequencies accessible to space-borne gravitational wave detectors. With advances in multi-messenger astronomy, an increasing number of double white dwarf systems will be discovered through both electromagnetic and gravitational wave observations. In this paper, we simulated two populations of double white dwarfs originating from different star formation histories (hereafter referred to as Model 1 and Model 2) using the binary population synthesis method. We predicted the number of double white dwarfs in our Galaxy detectable by TianQin and Laser Interferometer Space Antenna (LISA) individually, as well as through their joint observation. In addition, we performed an analysis to evaluate the accuracy of the parameter estimation using the Fisher information matrix. Furthermore, we predicted the number of detached eclipsing double white dwarfs detectable by Gaia and the Vera C. Rubin Observatory (VRO). Our study found that over the nominal mission durations, TianQin, LISA, and their joint observation can detect at least five thousand and potentially several tens of thousands of double white dwarfs with signal-to-noise ratios greater than 7. Gaia and VRO are expected to detect at least several dozen and up to several hundred eclipsing double white dwarfs with orbital periods less than 30 hours. We also found that several dozen eclipsing double white dwarfs can be detected jointly through electromagnetic and gravitational wave observations. 4 authors · Jun 24, 2024
- Monotonicity and Double Descent in Uncertainty Estimation with Gaussian Processes The quality of many modern machine learning models improves as model complexity increases, an effect that has been quantified, for predictive performance, with the non-monotonic double descent learning curve. Here, we address the overarching question: is there an analogous theory of double descent for models which estimate uncertainty? We provide a partially affirmative and partially negative answer in the setting of Gaussian processes (GP). Under standard assumptions, we prove that higher model quality for optimally-tuned GPs (including uncertainty prediction) under marginal likelihood is realized for larger input dimensions, and therefore exhibits a monotone error curve. After showing that marginal likelihood does not naturally exhibit double descent in the input dimension, we highlight related forms of posterior predictive loss that do exhibit non-monotonicity. Finally, we verify empirically that our results hold for real data, beyond our considered assumptions, and we explore consequences involving synthetic covariates. 4 authors · Oct 14, 2022
- Classifier-free Guidance with Adaptive Scaling Classifier-free guidance (CFG) is an essential mechanism in contemporary text-driven diffusion models. In practice, in controlling the impact of guidance we can see the trade-off between the quality of the generated images and correspondence to the prompt. When we use strong guidance, generated images fit the conditioned text perfectly but at the cost of their quality. Dually, we can use small guidance to generate high-quality results, but the generated images do not suit our prompt. In this paper, we present beta-CFG (beta-adaptive scaling in Classifier-Free Guidance), which controls the impact of guidance during generation to solve the above trade-off. First, beta-CFG stabilizes the effects of guiding by gradient-based adaptive normalization. Second, beta-CFG uses the family of single-modal (beta-distribution), time-dependent curves to dynamically adapt the trade-off between prompt matching and the quality of samples during the diffusion denoising process. Our model obtained better FID scores, maintaining the text-to-image CLIP similarity scores at a level similar to that of the reference CFG. 5 authors · Feb 14, 2025
- Extending Activation Steering to Broad Skills and Multiple Behaviours Current large language models have dangerous capabilities, which are likely to become more problematic in the future. Activation steering techniques can be used to reduce risks from these capabilities. In this paper, we investigate the efficacy of activation steering for broad skills and multiple behaviours. First, by comparing the effects of reducing performance on general coding ability and Python-specific ability, we find that steering broader skills is competitive to steering narrower skills. Second, we steer models to become more or less myopic and wealth-seeking, among other behaviours. In our experiments, combining steering vectors for multiple different behaviours into one steering vector is largely unsuccessful. On the other hand, injecting individual steering vectors at different places in a model simultaneously is promising. 3 authors · Mar 8, 2024