new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 31

Relative Representations of Latent Spaces enable Efficient Semantic Channel Equalization

In multi-user semantic communication, language mismatche poses a significant challenge when independently trained agents interact. We present a novel semantic equalization algorithm that enables communication between agents with different languages without additional retraining. Our algorithm is based on relative representations, a framework that enables different agents employing different neural network models to have unified representation. It proceeds by projecting the latent vectors of different models into a common space defined relative to a set of data samples called anchors, whose number equals the dimension of the resulting space. A communication between different agents translates to a communication of semantic symbols sampled from this relative space. This approach, in addition to aligning the semantic representations of different agents, allows compressing the amount of information being exchanged, by appropriately selecting the number of anchors. Eventually, we introduce a novel anchor selection strategy, which advantageously determines prototypical anchors, capturing the most relevant information for the downstream task. Our numerical results show the effectiveness of the proposed approach allowing seamless communication between agents with radically different models, including differences in terms of neural network architecture and datasets used for initial training.

  • 5 authors
·
Nov 29, 2024

BlazeBVD: Make Scale-Time Equalization Great Again for Blind Video Deflickering

Developing blind video deflickering (BVD) algorithms to enhance video temporal consistency, is gaining importance amid the flourish of image processing and video generation. However, the intricate nature of video data complicates the training of deep learning methods, leading to high resource consumption and instability, notably under severe lighting flicker. This underscores the critical need for a compact representation beyond pixel values to advance BVD research and applications. Inspired by the classic scale-time equalization (STE), our work introduces the histogram-assisted solution, called BlazeBVD, for high-fidelity and rapid BVD. Compared with STE, which directly corrects pixel values by temporally smoothing color histograms, BlazeBVD leverages smoothed illumination histograms within STE filtering to ease the challenge of learning temporal data using neural networks. In technique, BlazeBVD begins by condensing pixel values into illumination histograms that precisely capture flickering and local exposure variations. These histograms are then smoothed to produce singular frames set, filtered illumination maps, and exposure maps. Resorting to these deflickering priors, BlazeBVD utilizes a 2D network to restore faithful and consistent texture impacted by lighting changes or localized exposure issues. BlazeBVD also incorporates a lightweight 3D network to amend slight temporal inconsistencies, avoiding the resource consumption issue. Comprehensive experiments on synthetic, real-world and generated videos, showcase the superior qualitative and quantitative results of BlazeBVD, achieving inference speeds up to 10x faster than state-of-the-arts.

  • 7 authors
·
Mar 10, 2024

Rethinking Image Inpainting via a Mutual Encoder-Decoder with Feature Equalizations

Deep encoder-decoder based CNNs have advanced image inpainting methods for hole filling. While existing methods recover structures and textures step-by-step in the hole regions, they typically use two encoder-decoders for separate recovery. The CNN features of each encoder are learned to capture either missing structures or textures without considering them as a whole. The insufficient utilization of these encoder features limit the performance of recovering both structures and textures. In this paper, we propose a mutual encoder-decoder CNN for joint recovery of both. We use CNN features from the deep and shallow layers of the encoder to represent structures and textures of an input image, respectively. The deep layer features are sent to a structure branch and the shallow layer features are sent to a texture branch. In each branch, we fill holes in multiple scales of the CNN features. The filled CNN features from both branches are concatenated and then equalized. During feature equalization, we reweigh channel attentions first and propose a bilateral propagation activation function to enable spatial equalization. To this end, the filled CNN features of structure and texture mutually benefit each other to represent image content at all feature levels. We use the equalized feature to supplement decoder features for output image generation through skip connections. Experiments on the benchmark datasets show the proposed method is effective to recover structures and textures and performs favorably against state-of-the-art approaches.

  • 5 authors
·
Jul 14, 2020

Compositional Video Generation as Flow Equalization

Large-scale Text-to-Video (T2V) diffusion models have recently demonstrated unprecedented capability to transform natural language descriptions into stunning and photorealistic videos. Despite the promising results, a significant challenge remains: these models struggle to fully grasp complex compositional interactions between multiple concepts and actions. This issue arises when some words dominantly influence the final video, overshadowing other concepts.To tackle this problem, we introduce Vico, a generic framework for compositional video generation that explicitly ensures all concepts are represented properly. At its core, Vico analyzes how input tokens influence the generated video, and adjusts the model to prevent any single concept from dominating. Specifically, Vico extracts attention weights from all layers to build a spatial-temporal attention graph, and then estimates the influence as the max-flow from the source text token to the video target token. Although the direct computation of attention flow in diffusion models is typically infeasible, we devise an efficient approximation based on subgraph flows and employ a fast and vectorized implementation, which in turn makes the flow computation manageable and differentiable. By updating the noisy latent to balance these flows, Vico captures complex interactions and consequently produces videos that closely adhere to textual descriptions. We apply our method to multiple diffusion-based video models for compositional T2V and video editing. Empirical results demonstrate that our framework significantly enhances the compositional richness and accuracy of the generated videos. Visit our website at~https://adamdad.github.io/vico/{https://adamdad.github.io/vico/}.

  • 2 authors
·
Jun 10, 2024 1

A Cartesian Encoding Graph Neural Network for Crystal Structures Property Prediction: Application to Thermal Ellipsoid Estimation

In diffraction-based crystal structure analysis, thermal ellipsoids, quantified via Anisotropic Displacement Parameters (ADPs), are critical yet challenging to determine. ADPs capture atomic vibrations, reflecting thermal and structural properties, but traditional computation is often expensive. This paper introduces CartNet, a novel graph neural network (GNN) for efficiently predicting crystal properties by encoding atomic geometry into Cartesian coordinates alongside the crystal temperature. CartNet integrates a neighbour equalization technique to emphasize covalent and contact interactions, and a Cholesky-based head to ensure valid ADP predictions. We also propose a rotational SO(3) data augmentation strategy during training to handle unseen orientations. An ADP dataset with over 200,000 experimental crystal structures from the Cambridge Structural Database (CSD) was curated to validate the approach. CartNet significantly reduces computational costs and outperforms existing methods in ADP prediction by 10.87%, while delivering a 34.77% improvement over theoretical approaches. We further evaluated CartNet on other datasets covering formation energy, band gap, total energy, energy above the convex hull, bulk moduli, and shear moduli, achieving 7.71% better results on the Jarvis Dataset and 13.16% on the Materials Project Dataset. These gains establish CartNet as a state-of-the-art solution for diverse crystal property predictions. Project website and online demo: https://www.ee.ub.edu/cartnet

  • 7 authors
·
Jan 30

Hierarchical Spatial Algorithms for High-Resolution Image Quantization and Feature Extraction

This study introduces a modular framework for spatial image processing, integrating grayscale quantization, color and brightness enhancement, image sharpening, bidirectional transformation pipelines, and geometric feature extraction. A stepwise intensity transformation quantizes grayscale images into eight discrete levels, producing a posterization effect that simplifies representation while preserving structural detail. Color enhancement is achieved via histogram equalization in both RGB and YCrCb color spaces, with the latter improving contrast while maintaining chrominance fidelity. Brightness adjustment is implemented through HSV value-channel manipulation, and image sharpening is performed using a 3 * 3 convolution kernel to enhance high-frequency details. A bidirectional transformation pipeline that integrates unsharp masking, gamma correction, and noise amplification achieved accuracy levels of 76.10% and 74.80% for the forward and reverse processes, respectively. Geometric feature extraction employed Canny edge detection, Hough-based line estimation (e.g., 51.50{\deg} for billiard cue alignment), Harris corner detection, and morphological window localization. Cue isolation further yielded 81.87\% similarity against ground truth images. Experimental evaluation across diverse datasets demonstrates robust and deterministic performance, highlighting its potential for real-time image analysis and computer vision.

  • 1 authors
·
Oct 9

Achieving Socio-Economic Parity through the Lens of EU AI Act

Unfair treatment and discrimination are critical ethical concerns in AI systems, particularly as their adoption expands across diverse domains. Addressing these challenges, the recent introduction of the EU AI Act establishes a unified legal framework to ensure legal certainty for AI innovation and investment while safeguarding public interests, such as health, safety, fundamental rights, democracy, and the rule of law (Recital 8). The Act encourages stakeholders to initiate dialogue on existing AI fairness notions to address discriminatory outcomes of AI systems. However, these notions often overlook the critical role of Socio-Economic Status (SES), inadvertently perpetuating biases that favour the economically advantaged. This is concerning, given that principles of equalization advocate for equalizing resources or opportunities to mitigate disadvantages beyond an individual's control. While provisions for discrimination are laid down in the AI Act, specialized directions should be broadened, particularly in addressing economic disparities perpetuated by AI systems. In this work, we explore the limitations of popular AI fairness notions using a real-world dataset (Adult), highlighting their inability to address SES-driven disparities. To fill this gap, we propose a novel fairness notion, Socio-Economic Parity (SEP), which incorporates SES and promotes positive actions for underprivileged groups while accounting for factors within an individual's control, such as working hours, which can serve as a proxy for effort. We define a corresponding fairness measure and optimize a model constrained by SEP to demonstrate practical utility. Our results show the effectiveness of SEP in mitigating SES-driven biases. By analyzing the AI Act alongside our method, we lay a foundation for aligning AI fairness with SES factors while ensuring legal compliance.

  • 4 authors
·
Mar 29

Post-Training Quantization with Low-precision Minifloats and Integers on FPGAs

Post-Training Quantization (PTQ) is a powerful technique for model compression, reducing the precision of neural networks without additional training overhead. Recent works have investigated adopting 8-bit floating-point quantization (FP8) in the context of PTQ for model inference. However, the exploration of floating-point formats smaller than 8 bits and their comparison with integer quantization remains relatively limited. In this work, we present minifloats, which are reduced-precision floating-point formats capable of further reducing the memory footprint, latency, and energy cost of a model while approaching full-precision model accuracy. Our work presents a novel PTQ design-space exploration, comparing minifloat and integer quantization schemes across a range of 3 to 8 bits for both weights and activations. We examine the applicability of various PTQ techniques to minifloats, including weight equalization, bias correction, SmoothQuant, gradient-based learned rounding, and the GPTQ method. Our experiments validate the effectiveness of low-precision minifloats when compared to their integer counterparts across a spectrum of accuracy-precision trade-offs on a set of reference deep learning vision workloads. Finally, we evaluate our results against an FPGA-based hardware cost model, showing that integer quantization often remains the Pareto-optimal option, given its relatively smaller hardware resource footprint.

  • 7 authors
·
Nov 21, 2023

Online Analytic Exemplar-Free Continual Learning with Large Models for Imbalanced Autonomous Driving Task

In the field of autonomous driving, even a meticulously trained model can encounter failures when faced with unfamiliar sceanrios. One of these scenarios can be formulated as an online continual learning (OCL) problem. That is, data come in an online fashion, and models are updated according to these streaming data. Two major OCL challenges are catastrophic forgetting and data imbalance. To address these challenges, in this paper, we propose an Analytic Exemplar-Free Online Continual Learning (AEF-OCL). The AEF-OCL leverages analytic continual learning principles and employs ridge regression as a classifier for features extracted by a large backbone network. It solves the OCL problem by recursively calculating the analytical solution, ensuring an equalization between the continual learning and its joint-learning counterpart, and works without the need to save any used samples (i.e., exemplar-free). Additionally, we introduce a Pseudo-Features Generator (PFG) module that recursively estimates the deviation of real features. The PFG generates offset pseudo-features following a normal distribution, thereby addressing the data imbalance issue. Experimental results demonstrate that despite being an exemplar-free strategy, our method outperforms various methods on the autonomous driving SODA10M dataset. Source code is available at https://github.com/ZHUANGHP/Analytic-continual-learning.

  • 7 authors
·
May 27, 2024

SonicMaster: Towards Controllable All-in-One Music Restoration and Mastering

Music recordings often suffer from audio quality issues such as excessive reverberation, distortion, clipping, tonal imbalances, and a narrowed stereo image, especially when created in non-professional settings without specialized equipment or expertise. These problems are typically corrected using separate specialized tools and manual adjustments. In this paper, we introduce SonicMaster, the first unified generative model for music restoration and mastering that addresses a broad spectrum of audio artifacts with text-based control. SonicMaster is conditioned on natural language instructions to apply targeted enhancements, or can operate in an automatic mode for general restoration. To train this model, we construct the SonicMaster dataset, a large dataset of paired degraded and high-quality tracks by simulating common degradation types with nineteen degradation functions belonging to five enhancements groups: equalization, dynamics, reverb, amplitude, and stereo. Our approach leverages a flow-matching generative training paradigm to learn an audio transformation that maps degraded inputs to their cleaned, mastered versions guided by text prompts. Objective audio quality metrics demonstrate that SonicMaster significantly improves sound quality across all artifact categories. Furthermore, subjective listening tests confirm that listeners prefer SonicMaster's enhanced outputs over the original degraded audio, highlighting the effectiveness of our unified approach.

  • 3 authors
·
Aug 5 3

A new sample of massive B-type contact binary candidates from the OGLE survey of the Magellanic Clouds

Massive contact binaries (CBs) are key to understanding close-binary evolution and stellar mergers, yet their study has been limited by the scarcity of observed systems, particularly of B-type binaries expected to dominate this class. We bridge this gap by mining a large sample of massive CB candidates from the OGLE-IV database, increasing their known numbers in the Magellanic Clouds by nearly an order of magnitude. Using main-sequence colour-magnitude limits, an observationally informed period-luminosity-colour relation for CBs, and a high morph-parameter cut (cgeq0.7), we identified 68 O- and B-type binaries that exhibit smooth, sinusoidal light curves with nearly equal eclipse depths. We then isolated a bona fide sample of 37 CB candidates (28 in the LMC and 9 in the SMC) that match theoretical colour-magnitude and period distributions derived from an extensive grid of MESA binary models. The bona fide sample, dominated by B-type systems with Papprox0.6-1 d, agrees with the predicted population and may contain many qapprox1 binaries, as expected from models showing mass equalization preceding temperature equalization during nuclear-timescale contact. Synthetic PHOEBE light curves of contact and near-contact phases of MESA models reveal a degeneracy between these configurations, suggesting possible misidentifications among these systems. Spectroscopic follow-up is required to test these predictions and refine the evolutionary framework of massive CBs.

  • 5 authors
·
Oct 21, 2024