new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 4

PersFormer: 3D Lane Detection via Perspective Transformer and the OpenLane Benchmark

Methods for 3D lane detection have been recently proposed to address the issue of inaccurate lane layouts in many autonomous driving scenarios (uphill/downhill, bump, etc.). Previous work struggled in complex cases due to their simple designs of the spatial transformation between front view and bird's eye view (BEV) and the lack of a realistic dataset. Towards these issues, we present PersFormer: an end-to-end monocular 3D lane detector with a novel Transformer-based spatial feature transformation module. Our model generates BEV features by attending to related front-view local regions with camera parameters as a reference. PersFormer adopts a unified 2D/3D anchor design and an auxiliary task to detect 2D/3D lanes simultaneously, enhancing the feature consistency and sharing the benefits of multi-task learning. Moreover, we release one of the first large-scale real-world 3D lane datasets: OpenLane, with high-quality annotation and scenario diversity. OpenLane contains 200,000 frames, over 880,000 instance-level lanes, 14 lane categories, along with scene tags and the closed-in-path object annotations to encourage the development of lane detection and more industrial-related autonomous driving methods. We show that PersFormer significantly outperforms competitive baselines in the 3D lane detection task on our new OpenLane dataset as well as Apollo 3D Lane Synthetic dataset, and is also on par with state-of-the-art algorithms in the 2D task on OpenLane. The project page is available at https://github.com/OpenPerceptionX/PersFormer_3DLane and OpenLane dataset is provided at https://github.com/OpenPerceptionX/OpenLane.

  • 11 authors
·
Mar 21, 2022

Synthesizing Consistent Novel Views via 3D Epipolar Attention without Re-Training

Large diffusion models demonstrate remarkable zero-shot capabilities in novel view synthesis from a single image. However, these models often face challenges in maintaining consistency across novel and reference views. A crucial factor leading to this issue is the limited utilization of contextual information from reference views. Specifically, when there is an overlap in the viewing frustum between two views, it is essential to ensure that the corresponding regions maintain consistency in both geometry and appearance. This observation leads to a simple yet effective approach, where we propose to use epipolar geometry to locate and retrieve overlapping information from the input view. This information is then incorporated into the generation of target views, eliminating the need for training or fine-tuning, as the process requires no learnable parameters. Furthermore, to enhance the overall consistency of generated views, we extend the utilization of epipolar attention to a multi-view setting, allowing retrieval of overlapping information from the input view and other target views. Qualitative and quantitative experimental results demonstrate the effectiveness of our method in significantly improving the consistency of synthesized views without the need for any fine-tuning. Moreover, This enhancement also boosts the performance of downstream applications such as 3D reconstruction. The code is available at https://github.com/botaoye/ConsisSyn.

  • 5 authors
·
Feb 25, 2025

Multi-View Active Fine-Grained Recognition

As fine-grained visual classification (FGVC) being developed for decades, great works related have exposed a key direction -- finding discriminative local regions and revealing subtle differences. However, unlike identifying visual contents within static images, for recognizing objects in the real physical world, discriminative information is not only present within seen local regions but also hides in other unseen perspectives. In other words, in addition to focusing on the distinguishable part from the whole, for efficient and accurate recognition, it is required to infer the key perspective with a few glances, e.g., people may recognize a "Benz AMG GT" with a glance of its front and then know that taking a look at its exhaust pipe can help to tell which year's model it is. In this paper, back to reality, we put forward the problem of active fine-grained recognition (AFGR) and complete this study in three steps: (i) a hierarchical, multi-view, fine-grained vehicle dataset is collected as the testbed, (ii) a simple experiment is designed to verify that different perspectives contribute differently for FGVC and different categories own different discriminative perspective, (iii) a policy-gradient-based framework is adopted to achieve efficient recognition with active view selection. Comprehensive experiments demonstrate that the proposed method delivers a better performance-efficient trade-off than previous FGVC methods and advanced neural networks.

  • 7 authors
·
Jun 2, 2022

VFMF: World Modeling by Forecasting Vision Foundation Model Features

Forecasting from partial observations is central to world modeling. Many recent methods represent the world through images, and reduce forecasting to stochastic video generation. Although such methods excel at realism and visual fidelity, predicting pixels is computationally intensive and not directly useful in many applications, as it requires translating RGB into signals useful for decision making. An alternative approach uses features from vision foundation models (VFMs) as world representations, performing deterministic regression to predict future world states. These features can be directly translated into actionable signals such as semantic segmentation and depth, while remaining computationally efficient. However, deterministic regression averages over multiple plausible futures, undermining forecast accuracy by failing to capture uncertainty. To address this crucial limitation, we introduce a generative forecaster that performs autoregressive flow matching in VFM feature space. Our key insight is that generative modeling in this space requires encoding VFM features into a compact latent space suitable for diffusion. We show that this latent space preserves information more effectively than previously used PCA-based alternatives, both for forecasting and other applications, such as image generation. Our latent predictions can be easily decoded into multiple useful and interpretable output modalities: semantic segmentation, depth, surface normals, and even RGB. With matched architecture and compute, our method produces sharper and more accurate predictions than regression across all modalities. Our results suggest that stochastic conditional generation of VFM features offers a promising and scalable foundation for future world models.

  • 4 authors
·
Dec 11, 2025

ColorMNet: A Memory-based Deep Spatial-Temporal Feature Propagation Network for Video Colorization

How to effectively explore spatial-temporal features is important for video colorization. Instead of stacking multiple frames along the temporal dimension or recurrently propagating estimated features that will accumulate errors or cannot explore information from far-apart frames, we develop a memory-based feature propagation module that can establish reliable connections with features from far-apart frames and alleviate the influence of inaccurately estimated features. To extract better features from each frame for the above-mentioned feature propagation, we explore the features from large-pretrained visual models to guide the feature estimation of each frame so that the estimated features can model complex scenarios. In addition, we note that adjacent frames usually contain similar contents. To explore this property for better spatial and temporal feature utilization, we develop a local attention module to aggregate the features from adjacent frames in a spatial-temporal neighborhood. We formulate our memory-based feature propagation module, large-pretrained visual model guided feature estimation module, and local attention module into an end-to-end trainable network (named ColorMNet) and show that it performs favorably against state-of-the-art methods on both the benchmark datasets and real-world scenarios. The source code and pre-trained models will be available at https://github.com/yyang181/colormnet.

  • 4 authors
·
Apr 9, 2024

FrustumFormer: Adaptive Instance-aware Resampling for Multi-view 3D Detection

The transformation of features from 2D perspective space to 3D space is essential to multi-view 3D object detection. Recent approaches mainly focus on the design of view transformation, either pixel-wisely lifting perspective view features into 3D space with estimated depth or grid-wisely constructing BEV features via 3D projection, treating all pixels or grids equally. However, choosing what to transform is also important but has rarely been discussed before. The pixels of a moving car are more informative than the pixels of the sky. To fully utilize the information contained in images, the view transformation should be able to adapt to different image regions according to their contents. In this paper, we propose a novel framework named FrustumFormer, which pays more attention to the features in instance regions via adaptive instance-aware resampling. Specifically, the model obtains instance frustums on the bird's eye view by leveraging image view object proposals. An adaptive occupancy mask within the instance frustum is learned to refine the instance location. Moreover, the temporal frustum intersection could further reduce the localization uncertainty of objects. Comprehensive experiments on the nuScenes dataset demonstrate the effectiveness of FrustumFormer, and we achieve a new state-of-the-art performance on the benchmark. Codes and models will be made available at https://github.com/Robertwyq/Frustum.

  • 3 authors
·
Jan 10, 2023

3DiffTection: 3D Object Detection with Geometry-Aware Diffusion Features

We present 3DiffTection, a state-of-the-art method for 3D object detection from single images, leveraging features from a 3D-aware diffusion model. Annotating large-scale image data for 3D detection is resource-intensive and time-consuming. Recently, pretrained large image diffusion models have become prominent as effective feature extractors for 2D perception tasks. However, these features are initially trained on paired text and image data, which are not optimized for 3D tasks, and often exhibit a domain gap when applied to the target data. Our approach bridges these gaps through two specialized tuning strategies: geometric and semantic. For geometric tuning, we fine-tune a diffusion model to perform novel view synthesis conditioned on a single image, by introducing a novel epipolar warp operator. This task meets two essential criteria: the necessity for 3D awareness and reliance solely on posed image data, which are readily available (e.g., from videos) and does not require manual annotation. For semantic refinement, we further train the model on target data with detection supervision. Both tuning phases employ ControlNet to preserve the integrity of the original feature capabilities. In the final step, we harness these enhanced capabilities to conduct a test-time prediction ensemble across multiple virtual viewpoints. Through our methodology, we obtain 3D-aware features that are tailored for 3D detection and excel in identifying cross-view point correspondences. Consequently, our model emerges as a powerful 3D detector, substantially surpassing previous benchmarks, e.g., Cube-RCNN, a precedent in single-view 3D detection by 9.43\% in AP3D on the Omni3D-ARkitscene dataset. Furthermore, 3DiffTection showcases robust data efficiency and generalization to cross-domain data.

  • 4 authors
·
Nov 7, 2023

Prompt-CAM: Making Vision Transformers Interpretable for Fine-Grained Analysis

We present a simple approach to make pre-trained Vision Transformers (ViTs) interpretable for fine-grained analysis, aiming to identify and localize the traits that distinguish visually similar categories, such as bird species. Pre-trained ViTs, such as DINO, have demonstrated remarkable capabilities in extracting localized, discriminative features. However, saliency maps like Grad-CAM often fail to identify these traits, producing blurred, coarse heatmaps that highlight entire objects instead. We propose a novel approach, Prompt Class Attention Map (Prompt-CAM), to address this limitation. Prompt-CAM learns class-specific prompts for a pre-trained ViT and uses the corresponding outputs for classification. To correctly classify an image, the true-class prompt must attend to unique image patches not present in other classes' images (i.e., traits). As a result, the true class's multi-head attention maps reveal traits and their locations. Implementation-wise, Prompt-CAM is almost a ``free lunch,'' requiring only a modification to the prediction head of Visual Prompt Tuning (VPT). This makes Prompt-CAM easy to train and apply, in stark contrast to other interpretable methods that require designing specific models and training processes. Extensive empirical studies on a dozen datasets from various domains (e.g., birds, fishes, insects, fungi, flowers, food, and cars) validate the superior interpretation capability of Prompt-CAM. The source code and demo are available at https://github.com/Imageomics/Prompt_CAM.

imageomics HDR Imageomics Institute
·
Jan 16, 2025

FAC: 3D Representation Learning via Foreground Aware Feature Contrast

Contrastive learning has recently demonstrated great potential for unsupervised pre-training in 3D scene understanding tasks. However, most existing work randomly selects point features as anchors while building contrast, leading to a clear bias toward background points that often dominate in 3D scenes. Also, object awareness and foreground-to-background discrimination are neglected, making contrastive learning less effective. To tackle these issues, we propose a general foreground-aware feature contrast (FAC) framework to learn more effective point cloud representations in pre-training. FAC consists of two novel contrast designs to construct more effective and informative contrast pairs. The first is building positive pairs within the same foreground segment where points tend to have the same semantics. The second is that we prevent over-discrimination between 3D segments/objects and encourage foreground-to-background distinctions at the segment level with adaptive feature learning in a Siamese correspondence network, which adaptively learns feature correlations within and across point cloud views effectively. Visualization with point activation maps shows that our contrast pairs capture clear correspondences among foreground regions during pre-training. Quantitative experiments also show that FAC achieves superior knowledge transfer and data efficiency in various downstream 3D semantic segmentation and object detection tasks.

  • 5 authors
·
Mar 11, 2023

ChildPlay: A New Benchmark for Understanding Children's Gaze Behaviour

Gaze behaviors such as eye-contact or shared attention are important markers for diagnosing developmental disorders in children. While previous studies have looked at some of these elements, the analysis is usually performed on private datasets and is restricted to lab settings. Furthermore, all publicly available gaze target prediction benchmarks mostly contain instances of adults, which makes models trained on them less applicable to scenarios with young children. In this paper, we propose the first study for predicting the gaze target of children and interacting adults. To this end, we introduce the ChildPlay dataset: a curated collection of short video clips featuring children playing and interacting with adults in uncontrolled environments (e.g. kindergarten, therapy centers, preschools etc.), which we annotate with rich gaze information. We further propose a new model for gaze target prediction that is geometrically grounded by explicitly identifying the scene parts in the 3D field of view (3DFoV) of the person, leveraging recent geometry preserving depth inference methods. Our model achieves state of the art results on benchmark datasets and ChildPlay. Furthermore, results show that looking at faces prediction performance on children is much worse than on adults, and can be significantly improved by fine-tuning models using child gaze annotations. Our dataset and models will be made publicly available.

  • 3 authors
·
Jul 4, 2023

MUSTAN: Multi-scale Temporal Context as Attention for Robust Video Foreground Segmentation

Video foreground segmentation (VFS) is an important computer vision task wherein one aims to segment the objects under motion from the background. Most of the current methods are image-based, i.e., rely only on spatial cues while ignoring motion cues. Therefore, they tend to overfit the training data and don't generalize well to out-of-domain (OOD) distribution. To solve the above problem, prior works exploited several cues such as optical flow, background subtraction mask, etc. However, having a video data with annotations like optical flow is a challenging task. In this paper, we utilize the temporal information and the spatial cues from the video data to improve OOD performance. However, the challenge lies in how we model the temporal information given the video data in an interpretable way creates a very noticeable difference. We therefore devise a strategy that integrates the temporal context of the video in the development of VFS. Our approach give rise to deep learning architectures, namely MUSTAN1 and MUSTAN2 and they are based on the idea of multi-scale temporal context as an attention, i.e., aids our models to learn better representations that are beneficial for VFS. Further, we introduce a new video dataset, namely Indoor Surveillance Dataset (ISD) for VFS. It has multiple annotations on a frame level such as foreground binary mask, depth map, and instance semantic annotations. Therefore, ISD can benefit other computer vision tasks. We validate the efficacy of our architectures and compare the performance with baselines. We demonstrate that proposed methods significantly outperform the benchmark methods on OOD. In addition, the performance of MUSTAN2 is significantly improved on certain video categories on OOD data due to ISD.

  • 4 authors
·
Feb 1, 2024

MV-VTON: Multi-View Virtual Try-On with Diffusion Models

The goal of image-based virtual try-on is to generate an image of the target person naturally wearing the given clothing. However, existing methods solely focus on the frontal try-on using the frontal clothing. When the views of the clothing and person are significantly inconsistent, particularly when the person's view is non-frontal, the results are unsatisfactory. To address this challenge, we introduce Multi-View Virtual Try-ON (MV-VTON), which aims to reconstruct the dressing results from multiple views using the given clothes. Given that single-view clothes provide insufficient information for MV-VTON, we instead employ two images, i.e., the frontal and back views of the clothing, to encompass the complete view as much as possible. Moreover, we adopt diffusion models that have demonstrated superior abilities to perform our MV-VTON. In particular, we propose a view-adaptive selection method where hard-selection and soft-selection are applied to the global and local clothing feature extraction, respectively. This ensures that the clothing features are roughly fit to the person's view. Subsequently, we suggest joint attention blocks to align and fuse clothing features with person features. Additionally, we collect a MV-VTON dataset MVG, in which each person has multiple photos with diverse views and poses. Experiments show that the proposed method not only achieves state-of-the-art results on MV-VTON task using our MVG dataset, but also has superiority on frontal-view virtual try-on task using VITON-HD and DressCode datasets.

  • 5 authors
·
Apr 26, 2024

VSFormer: Mining Correlations in Flexible View Set for Multi-view 3D Shape Understanding

View-based methods have demonstrated promising performance in 3D shape understanding. However, they tend to make strong assumptions about the relations between views or learn the multi-view correlations indirectly, which limits the flexibility of exploring inter-view correlations and the effectiveness of target tasks. To overcome the above problems, this paper investigates flexible organization and explicit correlation learning for multiple views. In particular, we propose to incorporate different views of a 3D shape into a permutation-invariant set, referred to as View Set, which removes rigid relation assumptions and facilitates adequate information exchange and fusion among views. Based on that, we devise a nimble Transformer model, named VSFormer, to explicitly capture pairwise and higher-order correlations of all elements in the set. Meanwhile, we theoretically reveal a natural correspondence between the Cartesian product of a view set and the correlation matrix in the attention mechanism, which supports our model design. Comprehensive experiments suggest that VSFormer has better flexibility, efficient inference efficiency and superior performance. Notably, VSFormer reaches state-of-the-art results on various 3d recognition datasets, including ModelNet40, ScanObjectNN and RGBD. It also establishes new records on the SHREC'17 retrieval benchmark. The code and datasets are available at https://github.com/auniquesun/VSFormer.

  • 6 authors
·
Sep 13, 2024

Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis

Photorealistic frontal view synthesis from a single face image has a wide range of applications in the field of face recognition. Although data-driven deep learning methods have been proposed to address this problem by seeking solutions from ample face data, this problem is still challenging because it is intrinsically ill-posed. This paper proposes a Two-Pathway Generative Adversarial Network (TP-GAN) for photorealistic frontal view synthesis by simultaneously perceiving global structures and local details. Four landmark located patch networks are proposed to attend to local textures in addition to the commonly used global encoder-decoder network. Except for the novel architecture, we make this ill-posed problem well constrained by introducing a combination of adversarial loss, symmetry loss and identity preserving loss. The combined loss function leverages both frontal face distribution and pre-trained discriminative deep face models to guide an identity preserving inference of frontal views from profiles. Different from previous deep learning methods that mainly rely on intermediate features for recognition, our method directly leverages the synthesized identity preserving image for downstream tasks like face recognition and attribution estimation. Experimental results demonstrate that our method not only presents compelling perceptual results but also outperforms state-of-the-art results on large pose face recognition.

  • 4 authors
·
Apr 13, 2017

Bridging the Gap Between Vision Transformers and Convolutional Neural Networks on Small Datasets

There still remains an extreme performance gap between Vision Transformers (ViTs) and Convolutional Neural Networks (CNNs) when training from scratch on small datasets, which is concluded to the lack of inductive bias. In this paper, we further consider this problem and point out two weaknesses of ViTs in inductive biases, that is, the spatial relevance and diverse channel representation. First, on spatial aspect, objects are locally compact and relevant, thus fine-grained feature needs to be extracted from a token and its neighbors. While the lack of data hinders ViTs to attend the spatial relevance. Second, on channel aspect, representation exhibits diversity on different channels. But the scarce data can not enable ViTs to learn strong enough representation for accurate recognition. To this end, we propose Dynamic Hybrid Vision Transformer (DHVT) as the solution to enhance the two inductive biases. On spatial aspect, we adopt a hybrid structure, in which convolution is integrated into patch embedding and multi-layer perceptron module, forcing the model to capture the token features as well as their neighboring features. On channel aspect, we introduce a dynamic feature aggregation module in MLP and a brand new "head token" design in multi-head self-attention module to help re-calibrate channel representation and make different channel group representation interacts with each other. The fusion of weak channel representation forms a strong enough representation for classification. With this design, we successfully eliminate the performance gap between CNNs and ViTs, and our DHVT achieves a series of state-of-the-art performance with a lightweight model, 85.68% on CIFAR-100 with 22.8M parameters, 82.3% on ImageNet-1K with 24.0M parameters. Code is available at https://github.com/ArieSeirack/DHVT.

  • 4 authors
·
Oct 12, 2022

FullFront: Benchmarking MLLMs Across the Full Front-End Engineering Workflow

Front-end engineering involves a complex workflow where engineers conceptualize designs, translate them into code, and iteratively refine the implementation. While recent benchmarks primarily focus on converting visual designs to code, we present FullFront, a benchmark designed to evaluate Multimodal Large Language Models (MLLMs) across the full front-end development pipeline. FullFront assesses three fundamental tasks that map directly to the front-end engineering pipeline: Webpage Design (conceptualization phase), Webpage Perception QA (comprehension of visual organization and elements), and Webpage Code Generation (implementation phase). Unlike existing benchmarks that use either scraped websites with bloated code or oversimplified LLM-generated HTML, FullFront employs a novel, two-stage process to transform real-world webpages into clean, standardized HTML while maintaining diverse visual designs and avoiding copyright issues. Extensive testing of state-of-the-art MLLMs reveals significant limitations in page perception, code generation (particularly for image handling and layout), and interaction implementation. Our results quantitatively demonstrate performance disparities across models and tasks, and highlight a substantial gap between current MLLM capabilities and human expert performance in front-end engineering. The FullFront benchmark and code are available in https://github.com/Mikivishy/FullFront.

  • 5 authors
·
May 22, 2025 2

Fisheye Camera and Ultrasonic Sensor Fusion For Near-Field Obstacle Perception in Bird's-Eye-View

Accurate obstacle identification represents a fundamental challenge within the scope of near-field perception for autonomous driving. Conventionally, fisheye cameras are frequently employed for comprehensive surround-view perception, including rear-view obstacle localization. However, the performance of such cameras can significantly deteriorate in low-light conditions, during nighttime, or when subjected to intense sun glare. Conversely, cost-effective sensors like ultrasonic sensors remain largely unaffected under these conditions. Therefore, we present, to our knowledge, the first end-to-end multimodal fusion model tailored for efficient obstacle perception in a bird's-eye-view (BEV) perspective, utilizing fisheye cameras and ultrasonic sensors. Initially, ResNeXt-50 is employed as a set of unimodal encoders to extract features specific to each modality. Subsequently, the feature space associated with the visible spectrum undergoes transformation into BEV. The fusion of these two modalities is facilitated via concatenation. At the same time, the ultrasonic spectrum-based unimodal feature maps pass through content-aware dilated convolution, applied to mitigate the sensor misalignment between two sensors in the fused feature space. Finally, the fused features are utilized by a two-stage semantic occupancy decoder to generate grid-wise predictions for precise obstacle perception. We conduct a systematic investigation to determine the optimal strategy for multimodal fusion of both sensors. We provide insights into our dataset creation procedures, annotation guidelines, and perform a thorough data analysis to ensure adequate coverage of all scenarios. When applied to our dataset, the experimental results underscore the robustness and effectiveness of our proposed multimodal fusion approach.

  • 7 authors
·
Feb 1, 2024

Search is All You Need for Few-shot Anomaly Detection

Few-shot anomaly detection (FSAD) has emerged as a crucial yet challenging task in industrial inspection, where normal distribution modeling must be accomplished with only a few normal images. While existing approaches typically employ multi-modal foundation models combining language and vision modalities for prompt-guided anomaly detection, these methods often demand sophisticated prompt engineering and extensive manual tuning. In this paper, we demonstrate that a straightforward nearest-neighbor search framework can surpass state-of-the-art performance in both single-class and multi-class FSAD scenarios. Our proposed method, VisionAD, consists of four simple yet essential components: (1) scalable vision foundation models that extract universal and discriminative features; (2) dual augmentation strategies - support augmentation to enhance feature matching adaptability and query augmentation to address the oversights of single-view prediction; (3) multi-layer feature integration that captures both low-frequency global context and high-frequency local details with minimal computational overhead; and (4) a class-aware visual memory bank enabling efficient one-for-all multi-class detection. Extensive evaluations across MVTec-AD, VisA, and Real-IAD benchmarks demonstrate VisionAD's exceptional performance. Using only 1 normal images as support, our method achieves remarkable image-level AUROC scores of 97.4%, 94.8%, and 70.8% respectively, outperforming current state-of-the-art approaches by significant margins (+1.6%, +3.2%, and +1.4%). The training-free nature and superior few-shot capabilities of VisionAD make it particularly appealing for real-world applications where samples are scarce or expensive to obtain. Code is available at https://github.com/Qiqigeww/VisionAD.

  • 8 authors
·
Apr 16, 2025

Feat2GS: Probing Visual Foundation Models with Gaussian Splatting

Given that visual foundation models (VFMs) are trained on extensive datasets but often limited to 2D images, a natural question arises: how well do they understand the 3D world? With the differences in architecture and training protocols (i.e., objectives, proxy tasks), a unified framework to fairly and comprehensively probe their 3D awareness is urgently needed. Existing works on 3D probing suggest single-view 2.5D estimation (e.g., depth and normal) or two-view sparse 2D correspondence (e.g., matching and tracking). Unfortunately, these tasks ignore texture awareness, and require 3D data as ground-truth, which limits the scale and diversity of their evaluation set. To address these issues, we introduce Feat2GS, which readout 3D Gaussians attributes from VFM features extracted from unposed images. This allows us to probe 3D awareness for geometry and texture via novel view synthesis, without requiring 3D data. Additionally, the disentanglement of 3DGS parameters - geometry (x, alpha, Sigma) and texture (c) - enables separate analysis of texture and geometry awareness. Under Feat2GS, we conduct extensive experiments to probe the 3D awareness of several VFMs, and investigate the ingredients that lead to a 3D aware VFM. Building on these findings, we develop several variants that achieve state-of-the-art across diverse datasets. This makes Feat2GS useful for probing VFMs, and as a simple-yet-effective baseline for novel-view synthesis. Code and data will be made available at https://fanegg.github.io/Feat2GS/.

  • 5 authors
·
Dec 12, 2024 1

Consistency-diversity-realism Pareto fronts of conditional image generative models

Building world models that accurately and comprehensively represent the real world is the utmost aspiration for conditional image generative models as it would enable their use as world simulators. For these models to be successful world models, they should not only excel at image quality and prompt-image consistency but also ensure high representation diversity. However, current research in generative models mostly focuses on creative applications that are predominantly concerned with human preferences of image quality and aesthetics. We note that generative models have inference time mechanisms - or knobs - that allow the control of generation consistency, quality, and diversity. In this paper, we use state-of-the-art text-to-image and image-and-text-to-image models and their knobs to draw consistency-diversity-realism Pareto fronts that provide a holistic view on consistency-diversity-realism multi-objective. Our experiments suggest that realism and consistency can both be improved simultaneously; however there exists a clear tradeoff between realism/consistency and diversity. By looking at Pareto optimal points, we note that earlier models are better at representation diversity and worse in consistency/realism, and more recent models excel in consistency/realism while decreasing significantly the representation diversity. By computing Pareto fronts on a geodiverse dataset, we find that the first version of latent diffusion models tends to perform better than more recent models in all axes of evaluation, and there exist pronounced consistency-diversity-realism disparities between geographical regions. Overall, our analysis clearly shows that there is no best model and the choice of model should be determined by the downstream application. With this analysis, we invite the research community to consider Pareto fronts as an analytical tool to measure progress towards world models.

  • 8 authors
·
Jun 14, 2024

Intensive Vision-guided Network for Radiology Report Generation

Automatic radiology report generation is booming due to its huge application potential for the healthcare industry. However, existing computer vision and natural language processing approaches to tackle this problem are limited in two aspects. First, when extracting image features, most of them neglect multi-view reasoning in vision and model single-view structure of medical images, such as space-view or channel-view. However, clinicians rely on multi-view imaging information for comprehensive judgment in daily clinical diagnosis. Second, when generating reports, they overlook context reasoning with multi-modal information and focus on pure textual optimization utilizing retrieval-based methods. We aim to address these two issues by proposing a model that better simulates clinicians' perspectives and generates more accurate reports. Given the above limitation in feature extraction, we propose a Globally-intensive Attention (GIA) module in the medical image encoder to simulate and integrate multi-view vision perception. GIA aims to learn three types of vision perception: depth view, space view, and pixel view. On the other hand, to address the above problem in report generation, we explore how to involve multi-modal signals to generate precisely matched reports, i.e., how to integrate previously predicted words with region-aware visual content in next word prediction. Specifically, we design a Visual Knowledge-guided Decoder (VKGD), which can adaptively consider how much the model needs to rely on visual information and previously predicted text to assist next word prediction. Hence, our final Intensive Vision-guided Network (IVGN) framework includes a GIA-guided Visual Encoder and the VKGD. Experiments on two commonly-used datasets IU X-Ray and MIMIC-CXR demonstrate the superior ability of our method compared with other state-of-the-art approaches.

  • 8 authors
·
Feb 6, 2024

DiffPortrait3D: Controllable Diffusion for Zero-Shot Portrait View Synthesis

We present DiffPortrait3D, a conditional diffusion model that is capable of synthesizing 3D-consistent photo-realistic novel views from as few as a single in-the-wild portrait. Specifically, given a single RGB input, we aim to synthesize plausible but consistent facial details rendered from novel camera views with retained both identity and facial expression. In lieu of time-consuming optimization and fine-tuning, our zero-shot method generalizes well to arbitrary face portraits with unposed camera views, extreme facial expressions, and diverse artistic depictions. At its core, we leverage the generative prior of 2D diffusion models pre-trained on large-scale image datasets as our rendering backbone, while the denoising is guided with disentangled attentive control of appearance and camera pose. To achieve this, we first inject the appearance context from the reference image into the self-attention layers of the frozen UNets. The rendering view is then manipulated with a novel conditional control module that interprets the camera pose by watching a condition image of a crossed subject from the same view. Furthermore, we insert a trainable cross-view attention module to enhance view consistency, which is further strengthened with a novel 3D-aware noise generation process during inference. We demonstrate state-of-the-art results both qualitatively and quantitatively on our challenging in-the-wild and multi-view benchmarks.

  • 8 authors
·
Dec 20, 2023

FANVID: A Benchmark for Face and License Plate Recognition in Low-Resolution Videos

Real-world surveillance often renders faces and license plates unrecognizable in individual low-resolution (LR) frames, hindering reliable identification. To advance temporal recognition models, we present FANVID, a novel video-based benchmark comprising nearly 1,463 LR clips (180 x 320, 20--60 FPS) featuring 63 identities and 49 license plates from three English-speaking countries. Each video includes distractor faces and plates, increasing task difficulty and realism. The dataset contains 31,096 manually verified bounding boxes and labels. FANVID defines two tasks: (1) face matching -- detecting LR faces and matching them to high-resolution mugshots, and (2) license plate recognition -- extracting text from LR plates without a predefined database. Videos are downsampled from high-resolution sources to ensure that faces and text are indecipherable in single frames, requiring models to exploit temporal information. We introduce evaluation metrics adapted from mean Average Precision at IoU > 0.5, prioritizing identity correctness for faces and character-level accuracy for text. A baseline method with pre-trained video super-resolution, detection, and recognition achieved performance scores of 0.58 (face matching) and 0.42 (plate recognition), highlighting both the feasibility and challenge of the tasks. FANVID's selection of faces and plates balances diversity with recognition challenge. We release the software for data access, evaluation, baseline, and annotation to support reproducibility and extension. FANVID aims to catalyze innovation in temporal modeling for LR recognition, with applications in surveillance, forensics, and autonomous vehicles.

  • 8 authors
·
Jun 8, 2025

From an Image to a Scene: Learning to Imagine the World from a Million 360 Videos

Three-dimensional (3D) understanding of objects and scenes play a key role in humans' ability to interact with the world and has been an active area of research in computer vision, graphics, and robotics. Large scale synthetic and object-centric 3D datasets have shown to be effective in training models that have 3D understanding of objects. However, applying a similar approach to real-world objects and scenes is difficult due to a lack of large-scale data. Videos are a potential source for real-world 3D data, but finding diverse yet corresponding views of the same content has shown to be difficult at scale. Furthermore, standard videos come with fixed viewpoints, determined at the time of capture. This restricts the ability to access scenes from a variety of more diverse and potentially useful perspectives. We argue that large scale 360 videos can address these limitations to provide: scalable corresponding frames from diverse views. In this paper, we introduce 360-1M, a 360 video dataset, and a process for efficiently finding corresponding frames from diverse viewpoints at scale. We train our diffusion-based model, Odin, on 360-1M. Empowered by the largest real-world, multi-view dataset to date, Odin is able to freely generate novel views of real-world scenes. Unlike previous methods, Odin can move the camera through the environment, enabling the model to infer the geometry and layout of the scene. Additionally, we show improved performance on standard novel view synthesis and 3D reconstruction benchmarks.

  • 10 authors
·
Dec 10, 2024

NEV-NCD: Negative Learning, Entropy, and Variance regularization based novel action categories discovery

Novel Categories Discovery (NCD) facilitates learning from a partially annotated label space and enables deep learning (DL) models to operate in an open-world setting by identifying and differentiating instances of novel classes based on the labeled data notions. One of the primary assumptions of NCD is that the novel label space is perfectly disjoint and can be equipartitioned, but it is rarely realized by most NCD approaches in practice. To better align with this assumption, we propose a novel single-stage joint optimization-based NCD method, Negative learning, Entropy, and Variance regularization NCD (NEV-NCD). We demonstrate the efficacy of NEV-NCD in previously unexplored NCD applications of video action recognition (VAR) with the public UCF101 dataset and a curated in-house partial action-space annotated multi-view video dataset. We perform a thorough ablation study by varying the composition of final joint loss and associated hyper-parameters. During our experiments with UCF101 and multi-view action dataset, NEV-NCD achieves ~ 83% classification accuracy in test instances of labeled data. NEV-NCD achieves ~ 70% clustering accuracy over unlabeled data outperforming both naive baselines (by ~ 40%) and state-of-the-art pseudo-labeling-based approaches (by ~ 3.5%) over both datasets. Further, we propose to incorporate optional view-invariant feature learning with the multiview dataset to identify novel categories from novel viewpoints. Our additional view-invariance constraint improves the discriminative accuracy for both known and unknown categories by ~ 10% for novel viewpoints.

  • 7 authors
·
Apr 14, 2023

Feature Selective Anchor-Free Module for Single-Shot Object Detection

We motivate and present feature selective anchor-free (FSAF) module, a simple and effective building block for single-shot object detectors. It can be plugged into single-shot detectors with feature pyramid structure. The FSAF module addresses two limitations brought up by the conventional anchor-based detection: 1) heuristic-guided feature selection; 2) overlap-based anchor sampling. The general concept of the FSAF module is online feature selection applied to the training of multi-level anchor-free branches. Specifically, an anchor-free branch is attached to each level of the feature pyramid, allowing box encoding and decoding in the anchor-free manner at an arbitrary level. During training, we dynamically assign each instance to the most suitable feature level. At the time of inference, the FSAF module can work jointly with anchor-based branches by outputting predictions in parallel. We instantiate this concept with simple implementations of anchor-free branches and online feature selection strategy. Experimental results on the COCO detection track show that our FSAF module performs better than anchor-based counterparts while being faster. When working jointly with anchor-based branches, the FSAF module robustly improves the baseline RetinaNet by a large margin under various settings, while introducing nearly free inference overhead. And the resulting best model can achieve a state-of-the-art 44.6% mAP, outperforming all existing single-shot detectors on COCO.

  • 3 authors
·
Mar 1, 2019

Visual Classification via Description from Large Language Models

Vision-language models (VLMs) such as CLIP have shown promising performance on a variety of recognition tasks using the standard zero-shot classification procedure -- computing similarity between the query image and the embedded words for each category. By only using the category name, they neglect to make use of the rich context of additional information that language affords. The procedure gives no intermediate understanding of why a category is chosen, and furthermore provides no mechanism for adjusting the criteria used towards this decision. We present an alternative framework for classification with VLMs, which we call classification by description. We ask VLMs to check for descriptive features rather than broad categories: to find a tiger, look for its stripes; its claws; and more. By basing decisions on these descriptors, we can provide additional cues that encourage using the features we want to be used. In the process, we can get a clear idea of what features the model uses to construct its decision; it gains some level of inherent explainability. We query large language models (e.g., GPT-3) for these descriptors to obtain them in a scalable way. Extensive experiments show our framework has numerous advantages past interpretability. We show improvements in accuracy on ImageNet across distribution shifts; demonstrate the ability to adapt VLMs to recognize concepts unseen during training; and illustrate how descriptors can be edited to effectively mitigate bias compared to the baseline.

  • 2 authors
·
Oct 13, 2022

UpFusion: Novel View Diffusion from Unposed Sparse View Observations

We propose UpFusion, a system that can perform novel view synthesis and infer 3D representations for an object given a sparse set of reference images without corresponding pose information. Current sparse-view 3D inference methods typically rely on camera poses to geometrically aggregate information from input views, but are not robust in-the-wild when such information is unavailable/inaccurate. In contrast, UpFusion sidesteps this requirement by learning to implicitly leverage the available images as context in a conditional generative model for synthesizing novel views. We incorporate two complementary forms of conditioning into diffusion models for leveraging the input views: a) via inferring query-view aligned features using a scene-level transformer, b) via intermediate attentional layers that can directly observe the input image tokens. We show that this mechanism allows generating high-fidelity novel views while improving the synthesis quality given additional (unposed) images. We evaluate our approach on the Co3Dv2 and Google Scanned Objects datasets and demonstrate the benefits of our method over pose-reliant sparse-view methods as well as single-view methods that cannot leverage additional views. Finally, we also show that our learned model can generalize beyond the training categories and even allow reconstruction from self-captured images of generic objects in-the-wild.

  • 4 authors
·
Dec 11, 2023

Do computer vision foundation models learn the low-level characteristics of the human visual system?

Computer vision foundation models, such as DINO or OpenCLIP, are trained in a self-supervised manner on large image datasets. Analogously, substantial evidence suggests that the human visual system (HVS) is influenced by the statistical distribution of colors and patterns in the natural world, characteristics also present in the training data of foundation models. The question we address in this paper is whether foundation models trained on natural images mimic some of the low-level characteristics of the human visual system, such as contrast detection, contrast masking, and contrast constancy. Specifically, we designed a protocol comprising nine test types to evaluate the image encoders of 45 foundation and generative models. Our results indicate that some foundation models (e.g., DINO, DINOv2, and OpenCLIP), share some of the characteristics of human vision, but other models show little resemblance. Foundation models tend to show smaller sensitivity to low contrast and rather irregular responses to contrast across frequencies. The foundation models show the best agreement with human data in terms of contrast masking. Our findings suggest that human vision and computer vision may take both similar and different paths when learning to interpret images of the real world. Overall, while differences remain, foundation models trained on vision tasks start to align with low-level human vision, with DINOv2 showing the closest resemblance.

  • 4 authors
·
Feb 27, 2025

FutureDepth: Learning to Predict the Future Improves Video Depth Estimation

In this paper, we propose a novel video depth estimation approach, FutureDepth, which enables the model to implicitly leverage multi-frame and motion cues to improve depth estimation by making it learn to predict the future at training. More specifically, we propose a future prediction network, F-Net, which takes the features of multiple consecutive frames and is trained to predict multi-frame features one time step ahead iteratively. In this way, F-Net learns the underlying motion and correspondence information, and we incorporate its features into the depth decoding process. Additionally, to enrich the learning of multiframe correspondence cues, we further leverage a reconstruction network, R-Net, which is trained via adaptively masked auto-encoding of multiframe feature volumes. At inference time, both F-Net and R-Net are used to produce queries to work with the depth decoder, as well as a final refinement network. Through extensive experiments on several benchmarks, i.e., NYUDv2, KITTI, DDAD, and Sintel, which cover indoor, driving, and open-domain scenarios, we show that FutureDepth significantly improves upon baseline models, outperforms existing video depth estimation methods, and sets new state-of-the-art (SOTA) accuracy. Furthermore, FutureDepth is more efficient than existing SOTA video depth estimation models and has similar latencies when comparing to monocular models

  • 9 authors
·
Mar 19, 2024

MV-Performer: Taming Video Diffusion Model for Faithful and Synchronized Multi-view Performer Synthesis

Recent breakthroughs in video generation, powered by large-scale datasets and diffusion techniques, have shown that video diffusion models can function as implicit 4D novel view synthesizers. Nevertheless, current methods primarily concentrate on redirecting camera trajectory within the front view while struggling to generate 360-degree viewpoint changes. In this paper, we focus on human-centric subdomain and present MV-Performer, an innovative framework for creating synchronized novel view videos from monocular full-body captures. To achieve a 360-degree synthesis, we extensively leverage the MVHumanNet dataset and incorporate an informative condition signal. Specifically, we use the camera-dependent normal maps rendered from oriented partial point clouds, which effectively alleviate the ambiguity between seen and unseen observations. To maintain synchronization in the generated videos, we propose a multi-view human-centric video diffusion model that fuses information from the reference video, partial rendering, and different viewpoints. Additionally, we provide a robust inference procedure for in-the-wild video cases, which greatly mitigates the artifacts induced by imperfect monocular depth estimation. Extensive experiments on three datasets demonstrate our MV-Performer's state-of-the-art effectiveness and robustness, setting a strong model for human-centric 4D novel view synthesis.

  • 9 authors
·
Oct 8, 2025

ChangeViT: Unleashing Plain Vision Transformers for Change Detection

Change detection in remote sensing images is essential for tracking environmental changes on the Earth's surface. Despite the success of vision transformers (ViTs) as backbones in numerous computer vision applications, they remain underutilized in change detection, where convolutional neural networks (CNNs) continue to dominate due to their powerful feature extraction capabilities. In this paper, our study uncovers ViTs' unique advantage in discerning large-scale changes, a capability where CNNs fall short. Capitalizing on this insight, we introduce ChangeViT, a framework that adopts a plain ViT backbone to enhance the performance of large-scale changes. This framework is supplemented by a detail-capture module that generates detailed spatial features and a feature injector that efficiently integrates fine-grained spatial information into high-level semantic learning. The feature integration ensures that ChangeViT excels in both detecting large-scale changes and capturing fine-grained details, providing comprehensive change detection across diverse scales. Without bells and whistles, ChangeViT achieves state-of-the-art performance on three popular high-resolution datasets (i.e., LEVIR-CD, WHU-CD, and CLCD) and one low-resolution dataset (i.e., OSCD), which underscores the unleashed potential of plain ViTs for change detection. Furthermore, thorough quantitative and qualitative analyses validate the efficacy of the introduced modules, solidifying the effectiveness of our approach. The source code is available at https://github.com/zhuduowang/ChangeViT.

  • 5 authors
·
Jun 18, 2024

DFA3D: 3D Deformable Attention For 2D-to-3D Feature Lifting

In this paper, we propose a new operator, called 3D DeFormable Attention (DFA3D), for 2D-to-3D feature lifting, which transforms multi-view 2D image features into a unified 3D space for 3D object detection. Existing feature lifting approaches, such as Lift-Splat-based and 2D attention-based, either use estimated depth to get pseudo LiDAR features and then splat them to a 3D space, which is a one-pass operation without feature refinement, or ignore depth and lift features by 2D attention mechanisms, which achieve finer semantics while suffering from a depth ambiguity problem. In contrast, our DFA3D-based method first leverages the estimated depth to expand each view's 2D feature map to 3D and then utilizes DFA3D to aggregate features from the expanded 3D feature maps. With the help of DFA3D, the depth ambiguity problem can be effectively alleviated from the root, and the lifted features can be progressively refined layer by layer, thanks to the Transformer-like architecture. In addition, we propose a mathematically equivalent implementation of DFA3D which can significantly improve its memory efficiency and computational speed. We integrate DFA3D into several methods that use 2D attention-based feature lifting with only a few modifications in code and evaluate on the nuScenes dataset. The experiment results show a consistent improvement of +1.41\% mAP on average, and up to +15.1\% mAP improvement when high-quality depth information is available, demonstrating the superiority, applicability, and huge potential of DFA3D. The code is available at https://github.com/IDEA-Research/3D-deformable-attention.git.

  • 7 authors
·
Jul 24, 2023

Few-Shot Video Object Segmentation in X-Ray Angiography Using Local Matching and Spatio-Temporal Consistency Loss

We introduce a novel FSVOS model that employs a local matching strategy to restrict the search space to the most relevant neighboring pixels. Rather than relying on inefficient standard im2col-like implementations (e.g., spatial convolutions, depthwise convolutions and feature-shifting mechanisms) or hardware-specific CUDA kernels (e.g., deformable and neighborhood attention), which often suffer from limited portability across non-CUDA devices, we reorganize the local sampling process through a direction-based sampling perspective. Specifically, we implement a non-parametric sampling mechanism that enables dynamically varying sampling regions. This approach provides the flexibility to adapt to diverse spatial structures without the computational costs of parametric layers and the need for model retraining. To further enhance feature coherence across frames, we design a supervised spatio-temporal contrastive learning scheme that enforces consistency in feature representations. In addition, we introduce a publicly available benchmark dataset for multi-object segmentation in X-ray angiography videos (MOSXAV), featuring detailed, manually labeled segmentation ground truth. Extensive experiments on the CADICA, XACV, and MOSXAV datasets show that our proposed FSVOS method outperforms current state-of-the-art video segmentation methods in terms of segmentation accuracy and generalization capability (i.e., seen and unseen categories). This work offers enhanced flexibility and potential for a wide range of clinical applications.

  • 3 authors
·
Jan 2

Fashionformer: A simple, Effective and Unified Baseline for Human Fashion Segmentation and Recognition

Human fashion understanding is one crucial computer vision task since it has comprehensive information for real-world applications. This focus on joint human fashion segmentation and attribute recognition. Contrary to the previous works that separately model each task as a multi-head prediction problem, our insight is to bridge these two tasks with one unified model via vision transformer modeling to benefit each task. In particular, we introduce the object query for segmentation and the attribute query for attribute prediction. Both queries and their corresponding features can be linked via mask prediction. Then we adopt a two-stream query learning framework to learn the decoupled query representations.We design a novel Multi-Layer Rendering module for attribute stream to explore more fine-grained features. The decoder design shares the same spirit as DETR. Thus we name the proposed method Fahsionformer. Extensive experiments on three human fashion datasets illustrate the effectiveness of our approach. In particular, our method with the same backbone achieve relative 10\% improvements than previous works in case of a joint metric (AP^{text{mask}_{IoU+F_1}) for both segmentation and attribute recognition}. To the best of our knowledge, we are the first unified end-to-end vision transformer framework for human fashion analysis. We hope this simple yet effective method can serve as a new flexible baseline for fashion analysis. Code is available at https://github.com/xushilin1/FashionFormer.

  • 6 authors
·
Apr 10, 2022

A Tale of Two Features: Stable Diffusion Complements DINO for Zero-Shot Semantic Correspondence

Text-to-image diffusion models have made significant advances in generating and editing high-quality images. As a result, numerous approaches have explored the ability of diffusion model features to understand and process single images for downstream tasks, e.g., classification, semantic segmentation, and stylization. However, significantly less is known about what these features reveal across multiple, different images and objects. In this work, we exploit Stable Diffusion (SD) features for semantic and dense correspondence and discover that with simple post-processing, SD features can perform quantitatively similar to SOTA representations. Interestingly, the qualitative analysis reveals that SD features have very different properties compared to existing representation learning features, such as the recently released DINOv2: while DINOv2 provides sparse but accurate matches, SD features provide high-quality spatial information but sometimes inaccurate semantic matches. We demonstrate that a simple fusion of these two features works surprisingly well, and a zero-shot evaluation using nearest neighbors on these fused features provides a significant performance gain over state-of-the-art methods on benchmark datasets, e.g., SPair-71k, PF-Pascal, and TSS. We also show that these correspondences can enable interesting applications such as instance swapping in two images.

  • 7 authors
·
May 24, 2023

SeaBird: Segmentation in Bird's View with Dice Loss Improves Monocular 3D Detection of Large Objects

Monocular 3D detectors achieve remarkable performance on cars and smaller objects. However, their performance drops on larger objects, leading to fatal accidents. Some attribute the failures to training data scarcity or their receptive field requirements of large objects. In this paper, we highlight this understudied problem of generalization to large objects. We find that modern frontal detectors struggle to generalize to large objects even on nearly balanced datasets. We argue that the cause of failure is the sensitivity of depth regression losses to noise of larger objects. To bridge this gap, we comprehensively investigate regression and dice losses, examining their robustness under varying error levels and object sizes. We mathematically prove that the dice loss leads to superior noise-robustness and model convergence for large objects compared to regression losses for a simplified case. Leveraging our theoretical insights, we propose SeaBird (Segmentation in Bird's View) as the first step towards generalizing to large objects. SeaBird effectively integrates BEV segmentation on foreground objects for 3D detection, with the segmentation head trained with the dice loss. SeaBird achieves SoTA results on the KITTI-360 leaderboard and improves existing detectors on the nuScenes leaderboard, particularly for large objects. Code and models at https://github.com/abhi1kumar/SeaBird

  • 5 authors
·
Mar 29, 2024

Foveated Retinotopy Improves Classification and Localization in CNNs

From a falcon detecting prey to humans recognizing faces, many species exhibit extraordinary abilities in rapid visual localization and classification. These are made possible by a specialized retinal region called the fovea, which provides high acuity at the center of vision while maintaining lower resolution in the periphery. This distinctive spatial organization, preserved along the early visual pathway through retinotopic mapping, is fundamental to biological vision, yet remains largely unexplored in machine learning. Our study investigates how incorporating foveated retinotopy may benefit deep convolutional neural networks (CNNs) in image classification tasks. By implementing a foveated retinotopic transformation in the input layer of standard ResNet models and re-training them, we maintain comparable classification accuracy while enhancing the network's robustness to scale and rotational perturbations. Although this architectural modification introduces increased sensitivity to fixation point shifts, we demonstrate how this apparent limitation becomes advantageous: variations in classification probabilities across different gaze positions serve as effective indicators for object localization. Our findings suggest that foveated retinotopic mapping encodes implicit knowledge about visual object geometry, offering an efficient solution to the visual search problem - a capability crucial for many living species.

  • 3 authors
·
Feb 23, 2024

Exploring the cloud of feature interaction scores in a Rashomon set

Interactions among features are central to understanding the behavior of machine learning models. Recent research has made significant strides in detecting and quantifying feature interactions in single predictive models. However, we argue that the feature interactions extracted from a single pre-specified model may not be trustworthy since: a well-trained predictive model may not preserve the true feature interactions and there exist multiple well-performing predictive models that differ in feature interaction strengths. Thus, we recommend exploring feature interaction strengths in a model class of approximately equally accurate predictive models. In this work, we introduce the feature interaction score (FIS) in the context of a Rashomon set, representing a collection of models that achieve similar accuracy on a given task. We propose a general and practical algorithm to calculate the FIS in the model class. We demonstrate the properties of the FIS via synthetic data and draw connections to other areas of statistics. Additionally, we introduce a Halo plot for visualizing the feature interaction variance in high-dimensional space and a swarm plot for analyzing FIS in a Rashomon set. Experiments with recidivism prediction and image classification illustrate how feature interactions can vary dramatically in importance for similarly accurate predictive models. Our results suggest that the proposed FIS can provide valuable insights into the nature of feature interactions in machine learning models.

  • 4 authors
·
May 17, 2023

EAGLE: Efficient Adaptive Geometry-based Learning in Cross-view Understanding

Unsupervised Domain Adaptation has been an efficient approach to transferring the semantic segmentation model across data distributions. Meanwhile, the recent Open-vocabulary Semantic Scene understanding based on large-scale vision language models is effective in open-set settings because it can learn diverse concepts and categories. However, these prior methods fail to generalize across different camera views due to the lack of cross-view geometric modeling. At present, there are limited studies analyzing cross-view learning. To address this problem, we introduce a novel Unsupervised Cross-view Adaptation Learning approach to modeling the geometric structural change across views in Semantic Scene Understanding. First, we introduce a novel Cross-view Geometric Constraint on Unpaired Data to model structural changes in images and segmentation masks across cameras. Second, we present a new Geodesic Flow-based Correlation Metric to efficiently measure the geometric structural changes across camera views. Third, we introduce a novel view-condition prompting mechanism to enhance the view-information modeling of the open-vocabulary segmentation network in cross-view adaptation learning. The experiments on different cross-view adaptation benchmarks have shown the effectiveness of our approach in cross-view modeling, demonstrating that we achieve State-of-the-Art (SOTA) performance compared to prior unsupervised domain adaptation and open-vocabulary semantic segmentation methods.

  • 7 authors
·
Jun 3, 2024

Parametric Depth Based Feature Representation Learning for Object Detection and Segmentation in Bird's Eye View

Recent vision-only perception models for autonomous driving achieved promising results by encoding multi-view image features into Bird's-Eye-View (BEV) space. A critical step and the main bottleneck of these methods is transforming image features into the BEV coordinate frame. This paper focuses on leveraging geometry information, such as depth, to model such feature transformation. Existing works rely on non-parametric depth distribution modeling leading to significant memory consumption, or ignore the geometry information to address this problem. In contrast, we propose to use parametric depth distribution modeling for feature transformation. We first lift the 2D image features to the 3D space defined for the ego vehicle via a predicted parametric depth distribution for each pixel in each view. Then, we aggregate the 3D feature volume based on the 3D space occupancy derived from depth to the BEV frame. Finally, we use the transformed features for downstream tasks such as object detection and semantic segmentation. Existing semantic segmentation methods do also suffer from an hallucination problem as they do not take visibility information into account. This hallucination can be particularly problematic for subsequent modules such as control and planning. To mitigate the issue, our method provides depth uncertainty and reliable visibility-aware estimations. We further leverage our parametric depth modeling to present a novel visibility-aware evaluation metric that, when taken into account, can mitigate the hallucination problem. Extensive experiments on object detection and semantic segmentation on the nuScenes datasets demonstrate that our method outperforms existing methods on both tasks.

  • 4 authors
·
Jul 9, 2023

S-INF: Towards Realistic Indoor Scene Synthesis via Scene Implicit Neural Field

Learning-based methods have become increasingly popular in 3D indoor scene synthesis (ISS), showing superior performance over traditional optimization-based approaches. These learning-based methods typically model distributions on simple yet explicit scene representations using generative models. However, due to the oversimplified explicit representations that overlook detailed information and the lack of guidance from multimodal relationships within the scene, most learning-based methods struggle to generate indoor scenes with realistic object arrangements and styles. In this paper, we introduce a new method, Scene Implicit Neural Field (S-INF), for indoor scene synthesis, aiming to learn meaningful representations of multimodal relationships, to enhance the realism of indoor scene synthesis. S-INF assumes that the scene layout is often related to the object-detailed information. It disentangles the multimodal relationships into scene layout relationships and detailed object relationships, fusing them later through implicit neural fields (INFs). By learning specialized scene layout relationships and projecting them into S-INF, we achieve a realistic generation of scene layout. Additionally, S-INF captures dense and detailed object relationships through differentiable rendering, ensuring stylistic consistency across objects. Through extensive experiments on the benchmark 3D-FRONT dataset, we demonstrate that our method consistently achieves state-of-the-art performance under different types of ISS.

  • 6 authors
·
Dec 23, 2024

Multifaceted Feature Visualization: Uncovering the Different Types of Features Learned By Each Neuron in Deep Neural Networks

We can better understand deep neural networks by identifying which features each of their neurons have learned to detect. To do so, researchers have created Deep Visualization techniques including activation maximization, which synthetically generates inputs (e.g. images) that maximally activate each neuron. A limitation of current techniques is that they assume each neuron detects only one type of feature, but we know that neurons can be multifaceted, in that they fire in response to many different types of features: for example, a grocery store class neuron must activate either for rows of produce or for a storefront. Previous activation maximization techniques constructed images without regard for the multiple different facets of a neuron, creating inappropriate mixes of colors, parts of objects, scales, orientations, etc. Here, we introduce an algorithm that explicitly uncovers the multiple facets of each neuron by producing a synthetic visualization of each of the types of images that activate a neuron. We also introduce regularization methods that produce state-of-the-art results in terms of the interpretability of images obtained by activation maximization. By separately synthesizing each type of image a neuron fires in response to, the visualizations have more appropriate colors and coherent global structure. Multifaceted feature visualization thus provides a clearer and more comprehensive description of the role of each neuron.

  • 3 authors
·
Feb 11, 2016