- SynCED-EnDe 2025: A Synthetic and Curated English - German Dataset for Critical Error Detection in Machine Translation Critical Error Detection (CED) in machine translation aims to determine whether a translation is safe to use or contains unacceptable deviations in meaning. While the WMT21 English-German CED dataset provided the first benchmark, it is limited in scale, label balance, domain coverage, and temporal freshness. We present SynCED-EnDe, a new resource consisting of 1,000 gold-labeled and 8,000 silver-labeled sentence pairs, balanced 50/50 between error and non-error cases. SynCED-EnDe draws from diverse 2024-2025 sources (StackExchange, GOV.UK) and introduces explicit error subclasses, structured trigger flags, and fine-grained auxiliary judgments (obviousness, severity, localization complexity, contextual dependency, adequacy deviation). These enrichments enable systematic analyses of error risk and intricacy beyond binary detection. The dataset is permanently hosted on GitHub and Hugging Face, accompanied by documentation, annotation guidelines, and baseline scripts. Benchmark experiments with XLM-R and related encoders show substantial performance gains over WMT21 due to balanced labels and refined annotations. We envision SynCED-EnDe as a community resource to advance safe deployment of MT in information retrieval and conversational assistants, particularly in emerging contexts such as wearable AI devices. 3 authors · Oct 1, 2025
- QUENCH: Measuring the gap between Indic and Non-Indic Contextual General Reasoning in LLMs The rise of large language models (LLMs) has created a need for advanced benchmarking systems beyond traditional setups. To this end, we introduce QUENCH, a novel text-based English Quizzing Benchmark manually curated and transcribed from YouTube quiz videos. QUENCH possesses masked entities and rationales for the LLMs to predict via generation. At the intersection of geographical context and common sense reasoning, QUENCH helps assess world knowledge and deduction capabilities of LLMs via a zero-shot, open-domain quizzing setup. We perform an extensive evaluation on 7 LLMs and 4 metrics, investigating the influence of model size, prompting style, geographical context, and gold-labeled rationale generation. The benchmarking concludes with an error analysis to which the LLMs are prone. 4 authors · Dec 16, 2024
- Supervised Topical Key Phrase Extraction of News Stories using Crowdsourcing, Light Filtering and Co-reference Normalization Fast and effective automated indexing is critical for search and personalized services. Key phrases that consist of one or more words and represent the main concepts of the document are often used for the purpose of indexing. In this paper, we investigate the use of additional semantic features and pre-processing steps to improve automatic key phrase extraction. These features include the use of signal words and freebase categories. Some of these features lead to significant improvements in the accuracy of the results. We also experimented with 2 forms of document pre-processing that we call light filtering and co-reference normalization. Light filtering removes sentences from the document, which are judged peripheral to its main content. Co-reference normalization unifies several written forms of the same named entity into a unique form. We also needed a "Gold Standard" - a set of labeled documents for training and evaluation. While the subjective nature of key phrase selection precludes a true "Gold Standard", we used Amazon's Mechanical Turk service to obtain a useful approximation. Our data indicates that the biggest improvements in performance were due to shallow semantic features, news categories, and rhetorical signals (nDCG 78.47% vs. 68.93%). The inclusion of deeper semantic features such as Freebase sub-categories was not beneficial by itself, but in combination with pre-processing, did cause slight improvements in the nDCG scores. 5 authors · Jun 20, 2013
- Leveraging Large Language Models for Knowledge-free Weak Supervision in Clinical Natural Language Processing The performance of deep learning-based natural language processing systems is based on large amounts of labeled training data which, in the clinical domain, are not easily available or affordable. Weak supervision and in-context learning offer partial solutions to this issue, particularly using large language models (LLMs), but their performance still trails traditional supervised methods with moderate amounts of gold-standard data. In particular, inferencing with LLMs is computationally heavy. We propose an approach leveraging fine-tuning LLMs and weak supervision with virtually no domain knowledge that still achieves consistently dominant performance. Using a prompt-based approach, the LLM is used to generate weakly-labeled data for training a downstream BERT model. The weakly supervised model is then further fine-tuned on small amounts of gold standard data. We evaluate this approach using Llama2 on three different n2c2 datasets. With no more than 10 gold standard notes, our final BERT models weakly supervised by fine-tuned Llama2-13B consistently outperformed out-of-the-box PubMedBERT by 4.7% to 47.9% in F1 scores. With only 50 gold standard notes, our models achieved close performance to fully fine-tuned systems. 2 authors · Jun 10, 2024
- Spread Love Not Hate: Undermining the Importance of Hateful Pre-training for Hate Speech Detection Pre-training large neural language models, such as BERT, has led to impressive gains on many natural language processing (NLP) tasks. Although this method has proven to be effective for many domains, it might not always provide desirable benefits. In this paper, we study the effects of hateful pre-training on low-resource hate speech classification tasks. While previous studies on the English language have emphasized its importance, we aim to augment their observations with some non-obvious insights. We evaluate different variations of tweet-based BERT models pre-trained on hateful, non-hateful, and mixed subsets of a 40M tweet dataset. This evaluation is carried out for the Indian languages Hindi and Marathi. This paper is empirical evidence that hateful pre-training is not the best pre-training option for hate speech detection. We show that pre-training on non-hateful text from the target domain provides similar or better results. Further, we introduce HindTweetBERT and MahaTweetBERT, the first publicly available BERT models pre-trained on Hindi and Marathi tweets, respectively. We show that they provide state-of-the-art performance on hate speech classification tasks. We also release hateful BERT for the two languages and a gold hate speech evaluation benchmark HateEval-Hi and HateEval-Mr consisting of manually labeled 2000 tweets each. The models and data are available at https://github.com/l3cube-pune/MarathiNLP . 5 authors · Oct 9, 2022
1 MHQA: A Diverse, Knowledge Intensive Mental Health Question Answering Challenge for Language Models Mental health remains a challenging problem all over the world, with issues like depression, anxiety becoming increasingly common. Large Language Models (LLMs) have seen a vast application in healthcare, specifically in answering medical questions. However, there is a lack of standard benchmarking datasets for question answering (QA) in mental health. Our work presents a novel multiple choice dataset, MHQA (Mental Health Question Answering), for benchmarking Language models (LMs). Previous mental health datasets have focused primarily on text classification into specific labels or disorders. MHQA, on the other hand, presents question-answering for mental health focused on four key domains: anxiety, depression, trauma, and obsessive/compulsive issues, with diverse question types, namely, factoid, diagnostic, prognostic, and preventive. We use PubMed abstracts as the primary source for QA. We develop a rigorous pipeline for LLM-based identification of information from abstracts based on various selection criteria and converting it into QA pairs. Further, valid QA pairs are extracted based on post-hoc validation criteria. Overall, our MHQA dataset consists of 2,475 expert-verified gold standard instances called MHQA-gold and ~56.1k pairs pseudo labeled using external medical references. We report F1 scores on different LLMs along with few-shot and supervised fine-tuning experiments, further discussing the insights for the scores. 7 authors · Feb 21, 2025
- L3Cube-MahaEmotions: A Marathi Emotion Recognition Dataset with Synthetic Annotations using CoTR prompting and Large Language Models Emotion recognition in low-resource languages like Marathi remains challenging due to limited annotated data. We present L3Cube-MahaEmotions, a high-quality Marathi emotion recognition dataset with 11 fine-grained emotion labels. The training data is synthetically annotated using large language models (LLMs), while the validation and test sets are manually labeled to serve as a reliable gold-standard benchmark. Building on the MahaSent dataset, we apply the Chain-of-Translation (CoTR) prompting technique, where Marathi sentences are translated into English and emotion labeled via a single prompt. GPT-4 and Llama3-405B were evaluated, with GPT-4 selected for training data annotation due to superior label quality. We evaluate model performance using standard metrics and explore label aggregation strategies (e.g., Union, Intersection). While GPT-4 predictions outperform fine-tuned BERT models, BERT-based models trained on synthetic labels fail to surpass GPT-4. This highlights both the importance of high-quality human-labeled data and the inherent complexity of emotion recognition. An important finding of this work is that generic LLMs like GPT-4 and Llama3-405B generalize better than fine-tuned BERT for complex low-resource emotion recognition tasks. The dataset and model are shared publicly at https://github.com/l3cube-pune/MarathiNLP 2 authors · Jun 1, 2025
- Neural Modeling for Named Entities and Morphology (NEMO^2) Named Entity Recognition (NER) is a fundamental NLP task, commonly formulated as classification over a sequence of tokens. Morphologically-Rich Languages (MRLs) pose a challenge to this basic formulation, as the boundaries of Named Entities do not necessarily coincide with token boundaries, rather, they respect morphological boundaries. To address NER in MRLs we then need to answer two fundamental questions, namely, what are the basic units to be labeled, and how can these units be detected and classified in realistic settings, i.e., where no gold morphology is available. We empirically investigate these questions on a novel NER benchmark, with parallel tokenlevel and morpheme-level NER annotations, which we develop for Modern Hebrew, a morphologically rich-and-ambiguous language. Our results show that explicitly modeling morphological boundaries leads to improved NER performance, and that a novel hybrid architecture, in which NER precedes and prunes morphological decomposition, greatly outperforms the standard pipeline, where morphological decomposition strictly precedes NER, setting a new performance bar for both Hebrew NER and Hebrew morphological decomposition tasks. 2 authors · Jul 30, 2020
- Hate Speech detection in the Bengali language: A dataset and its baseline evaluation Social media sites such as YouTube and Facebook have become an integral part of everyone's life and in the last few years, hate speech in the social media comment section has increased rapidly. Detection of hate speech on social media websites faces a variety of challenges including small imbalanced data sets, the findings of an appropriate model and also the choice of feature analysis method. further more, this problem is more severe for the Bengali speaking community due to the lack of gold standard labelled datasets. This paper presents a new dataset of 30,000 user comments tagged by crowd sourcing and varified by experts. All the comments are collected from YouTube and Facebook comment section and classified into seven categories: sports, entertainment, religion, politics, crime, celebrity and TikTok & meme. A total of 50 annotators annotated each comment three times and the majority vote was taken as the final annotation. Nevertheless, we have conducted base line experiments and several deep learning models along with extensive pre-trained Bengali word embedding such as Word2Vec, FastText and BengFastText on this dataset to facilitate future research opportunities. The experiment illustrated that although all deep learning models performed well, SVM achieved the best result with 87.5% accuracy. Our core contribution is to make this benchmark dataset available and accessible to facilitate further research in the field of in the field of Bengali hate speech detection. 4 authors · Dec 17, 2020