Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeByteGen: A Tokenizer-Free Generative Model for Orderbook Events in Byte Space
Generative modeling of high-frequency limit order book (LOB) dynamics is a critical yet unsolved challenge in quantitative finance, essential for robust market simulation and strategy backtesting. Existing approaches are often constrained by simplifying stochastic assumptions or, in the case of modern deep learning models like Transformers, rely on tokenization schemes that affect the high-precision, numerical nature of financial data through discretization and binning. To address these limitations, we introduce ByteGen, a novel generative model that operates directly on the raw byte streams of LOB events. Our approach treats the problem as an autoregressive next-byte prediction task, for which we design a compact and efficient 32-byte packed binary format to represent market messages without information loss. The core novelty of our work is the complete elimination of feature engineering and tokenization, enabling the model to learn market dynamics from its most fundamental representation. We achieve this by adapting the H-Net architecture, a hybrid Mamba-Transformer model that uses a dynamic chunking mechanism to discover the inherent structure of market messages without predefined rules. Our primary contributions are: 1) the first end-to-end, byte-level framework for LOB modeling; 2) an efficient packed data representation; and 3) a comprehensive evaluation on high-frequency data. Trained on over 34 million events from CME Bitcoin futures, ByteGen successfully reproduces key stylized facts of financial markets, generating realistic price distributions, heavy-tailed returns, and bursty event timing. Our findings demonstrate that learning directly from byte space is a promising and highly flexible paradigm for modeling complex financial systems, achieving competitive performance on standard market quality metrics without the biases of tokenization.
Limit Order Book Dynamics in Matching Markets:Microstructure, Spread, and Execution Slippage
Conventional models of matching markets assume that monetary transfers can clear markets by compensating for utility differentials. However, empirical patterns show that such transfers often fail to close structural preference gaps. This paper introduces a market microstructure framework that models matching decisions as a limit order book system with rigid bid ask spreads. Individual preferences are represented by a latent preference state matrix, where the spread between an agent's internal ask price (the unconditional maximum) and the market's best bid (the reachable maximum) creates a structural liquidity constraint. We establish a Threshold Impossibility Theorem showing that linear compensation cannot close these spreads unless it induces a categorical identity shift. A dynamic discrete choice execution model further demonstrates that matches occur only when the market to book ratio crosses a time decaying liquidity threshold, analogous to order execution under inventory pressure. Numerical experiments validate persistent slippage, regional invariance of preference orderings, and high tier zero spread executions. The model provides a unified microstructure explanation for matching failures, compensation inefficiency, and post match regret in illiquid order driven environments.
Chaos and Synchronization in Financial Leverages Dynamics: Modeling Systemic Risk with Coupled Unimodal Maps
Systemic financial risk refers to the simultaneous failure or destabilization of multiple financial institutions, often triggered by contagion mechanisms or common exposures to shocks. In this paper, we present a dynamical model of bank leverage (the ratio of asset holdings to equity) a quantity that both reflects and drives risk dynamics. We model how banks, constrained by Value-at-Risk (VaR) regulations, adjust their leverage in response to changes in the price of a single asset, assumed to be held in fixed proportion across banks. This leverage-targeting behavior introduces a procyclical feedback loop between asset prices and leverage. In the dynamics, this can manifest as logistic-like behavior with a rich bifurcation structure across model parameters. By analyzing these coupled dynamics in both isolated and interconnected bank models, we outline a framework for understanding how systemic risk can emerge from seemingly rational micro-level behavior.
Learning to Predict Short-Term Volatility with Order Flow Image Representation
Introduction: The paper addresses the challenging problem of predicting the short-term realized volatility of the Bitcoin price using order flow information. The inherent stochastic nature and anti-persistence of price pose difficulties in accurate prediction. Methods: To address this, we propose a method that transforms order flow data over a fixed time interval (snapshots) into images. The order flow includes trade sizes, trade directions, and limit order book, and is mapped into image colour channels. These images are then used to train both a simple 3-layer Convolutional Neural Network (CNN) and more advanced ResNet-18 and ConvMixer, with additionally supplementing them with hand-crafted features. The models are evaluated against classical GARCH, Multilayer Perceptron trained on raw data, and a naive guess method that considers current volatility as a prediction. Results: The experiments are conducted using price data from January 2021 and evaluate model performance in terms of root mean square error (RMSPE). The results show that our order flow representation with a CNN as a predictive model achieves the best performance, with an RMSPE of 0.85+/-1.1 for the model with aggregated features and 1.0+/-1.4 for the model without feature supplementation. ConvMixer with feature supplementation follows closely. In comparison, the RMSPE for the naive guess method was 1.4+/-3.0.
Learning-Order Autoregressive Models with Application to Molecular Graph Generation
Autoregressive models (ARMs) have become the workhorse for sequence generation tasks, since many problems can be modeled as next-token prediction. While there appears to be a natural ordering for text (i.e., left-to-right), for many data types, such as graphs, the canonical ordering is less obvious. To address this problem, we introduce a variant of ARM that generates high-dimensional data using a probabilistic ordering that is sequentially inferred from data. This model incorporates a trainable probability distribution, referred to as an order-policy, that dynamically decides the autoregressive order in a state-dependent manner. To train the model, we introduce a variational lower bound on the exact log-likelihood, which we optimize with stochastic gradient estimation. We demonstrate experimentally that our method can learn meaningful autoregressive orderings in image and graph generation. On the challenging domain of molecular graph generation, we achieve state-of-the-art results on the QM9 and ZINC250k benchmarks, evaluated using the Fr\'{e}chet ChemNet Distance (FCD).
DeepLOB: Deep Convolutional Neural Networks for Limit Order Books
We develop a large-scale deep learning model to predict price movements from limit order book (LOB) data of cash equities. The architecture utilises convolutional filters to capture the spatial structure of the limit order books as well as LSTM modules to capture longer time dependencies. The proposed network outperforms all existing state-of-the-art algorithms on the benchmark LOB dataset [1]. In a more realistic setting, we test our model by using one year market quotes from the London Stock Exchange and the model delivers a remarkably stable out-of-sample prediction accuracy for a variety of instruments. Importantly, our model translates well to instruments which were not part of the training set, indicating the model's ability to extract universal features. In order to better understand these features and to go beyond a "black box" model, we perform a sensitivity analysis to understand the rationale behind the model predictions and reveal the components of LOBs that are most relevant. The ability to extract robust features which translate well to other instruments is an important property of our model which has many other applications.
Universal features of price formation in financial markets: perspectives from Deep Learning
Using a large-scale Deep Learning approach applied to a high-frequency database containing billions of electronic market quotes and transactions for US equities, we uncover nonparametric evidence for the existence of a universal and stationary price formation mechanism relating the dynamics of supply and demand for a stock, as revealed through the order book, to subsequent variations in its market price. We assess the model by testing its out-of-sample predictions for the direction of price moves given the history of price and order flow, across a wide range of stocks and time periods. The universal price formation model is shown to exhibit a remarkably stable out-of-sample prediction accuracy across time, for a wide range of stocks from different sectors. Interestingly, these results also hold for stocks which are not part of the training sample, showing that the relations captured by the model are universal and not asset-specific. The universal model --- trained on data from all stocks --- outperforms, in terms of out-of-sample prediction accuracy, asset-specific linear and nonlinear models trained on time series of any given stock, showing that the universal nature of price formation weighs in favour of pooling together financial data from various stocks, rather than designing asset- or sector-specific models as commonly done. Standard data normalizations based on volatility, price level or average spread, or partitioning the training data into sectors or categories such as large/small tick stocks, do not improve training results. On the other hand, inclusion of price and order flow history over many past observations is shown to improve forecasting performance, showing evidence of path-dependence in price dynamics.
Learning Dynamical Demand Response Model in Real-Time Pricing Program
Price responsiveness is a major feature of end use customers (EUCs) that participate in demand response (DR) programs, and has been conventionally modeled with static demand functions, which take the electricity price as the input and the aggregate energy consumption as the output. This, however, neglects the inherent temporal correlation of the EUC behaviors, and may result in large errors when predicting the actual responses of EUCs in real-time pricing (RTP) programs. In this paper, we propose a dynamical DR model so as to capture the temporal behavior of the EUCs. The states in the proposed dynamical DR model can be explicitly chosen, in which case the model can be represented by a linear function or a multi-layer feedforward neural network, or implicitly chosen, in which case the model can be represented by a recurrent neural network or a long short-term memory unit network. In both cases, the dynamical DR model can be learned from historical price and energy consumption data. Numerical simulation illustrated how the states are chosen and also showed the proposed dynamical DR model significantly outperforms the static ones.
Extending Deep Reinforcement Learning Frameworks in Cryptocurrency Market Making
There has been a recent surge in interest in the application of artificial intelligence to automated trading. Reinforcement learning has been applied to single- and multi-instrument use cases, such as market making or portfolio management. This paper proposes a new approach to framing cryptocurrency market making as a reinforcement learning challenge by introducing an event-based environment wherein an event is defined as a change in price greater or less than a given threshold, as opposed to by tick or time-based events (e.g., every minute, hour, day, etc.). Two policy-based agents are trained to learn a market making trading strategy using eight days of training data and evaluate their performance using 30 days of testing data. Limit order book data recorded from Bitmex exchange is used to validate this approach, which demonstrates improved profit and stability compared to a time-based approach for both agents when using a simple multi-layer perceptron neural network for function approximation and seven different reward functions.
Evaluation of Text-to-Video Generation Models: A Dynamics Perspective
Comprehensive and constructive evaluation protocols play an important role in the development of sophisticated text-to-video (T2V) generation models. Existing evaluation protocols primarily focus on temporal consistency and content continuity, yet largely ignore the dynamics of video content. Dynamics are an essential dimension for measuring the visual vividness and the honesty of video content to text prompts. In this study, we propose an effective evaluation protocol, termed DEVIL, which centers on the dynamics dimension to evaluate T2V models. For this purpose, we establish a new benchmark comprising text prompts that fully reflect multiple dynamics grades, and define a set of dynamics scores corresponding to various temporal granularities to comprehensively evaluate the dynamics of each generated video. Based on the new benchmark and the dynamics scores, we assess T2V models with the design of three metrics: dynamics range, dynamics controllability, and dynamics-based quality. Experiments show that DEVIL achieves a Pearson correlation exceeding 90% with human ratings, demonstrating its potential to advance T2V generation models. Code is available at https://github.com/MingXiangL/DEVIL.
Dynamic Factor Analysis of Price Movements in the Philippine Stock Exchange
The intricate dynamics of stock markets have led to extensive research on models that are able to effectively explain their inherent complexities. This study leverages the econometrics literature to explore the dynamic factor model as an interpretable model with sufficient predictive capabilities for capturing essential market phenomena. Although the model has been extensively applied for predictive purposes, this study focuses on analyzing the extracted loadings and common factors as an alternative framework for understanding stock price dynamics. The results reveal novel insights into traditional market theories when applied to the Philippine Stock Exchange using the Kalman method and maximum likelihood estimation, with subsequent validation against the capital asset pricing model. Notably, a one-factor model extracts a common factor representing systematic or market dynamics similar to the composite index, whereas a two-factor model extracts common factors representing market trends and volatility. Furthermore, an application of the model for nowcasting the growth rates of the Philippine gross domestic product highlights the potential of the extracted common factors as viable real-time market indicators, yielding over a 34% decrease in the out-of-sample prediction error. Overall, the results underscore the value of dynamic factor analysis in gaining a deeper understanding of market price movement dynamics.
Learning Dynamics of LLM Finetuning
Learning dynamics, which describes how the learning of specific training examples influences the model's predictions on other examples, gives us a powerful tool for understanding the behavior of deep learning systems. We study the learning dynamics of large language models during different types of finetuning, by analyzing the step-wise decomposition of how influence accumulates among different potential responses. Our framework allows a uniform interpretation of many interesting observations about the training of popular algorithms for both instruction tuning and preference tuning. In particular, we propose a hypothetical explanation of why specific types of hallucination are strengthened after finetuning, e.g., the model might use phrases or facts in the response for question B to answer question A, or the model might keep repeating similar simple phrases when generating responses. We also extend our framework and highlight a unique "squeezing effect" to explain a previously observed phenomenon in off-policy direct preference optimization (DPO), where running DPO for too long makes even the desired outputs less likely. This framework also provides insights into where the benefits of on-policy DPO and other variants come from. The analysis not only provides a novel perspective of understanding LLM's finetuning but also inspires a simple, effective method to improve alignment performance.
CausalDynamics: A large-scale benchmark for structural discovery of dynamical causal models
Causal discovery for dynamical systems poses a major challenge in fields where active interventions are infeasible. Most methods used to investigate these systems and their associated benchmarks are tailored to deterministic, low-dimensional and weakly nonlinear time-series data. To address these limitations, we present CausalDynamics, a large-scale benchmark and extensible data generation framework to advance the structural discovery of dynamical causal models. Our benchmark consists of true causal graphs derived from thousands of coupled ordinary and stochastic differential equations as well as two idealized climate models. We perform a comprehensive evaluation of state-of-the-art causal discovery algorithms for graph reconstruction on systems with noisy, confounded, and lagged dynamics. CausalDynamics consists of a plug-and-play, build-your-own coupling workflow that enables the construction of a hierarchy of physical systems. We anticipate that our framework will facilitate the development of robust causal discovery algorithms that are broadly applicable across domains while addressing their unique challenges. We provide a user-friendly implementation and documentation on https://kausable.github.io/CausalDynamics.
Vending-Bench: A Benchmark for Long-Term Coherence of Autonomous Agents
While Large Language Models (LLMs) can exhibit impressive proficiency in isolated, short-term tasks, they often fail to maintain coherent performance over longer time horizons. In this paper, we present Vending-Bench, a simulated environment designed to specifically test an LLM-based agent's ability to manage a straightforward, long-running business scenario: operating a vending machine. Agents must balance inventories, place orders, set prices, and handle daily fees - tasks that are each simple but collectively, over long horizons (>20M tokens per run) stress an LLM's capacity for sustained, coherent decision-making. Our experiments reveal high variance in performance across multiple LLMs: Claude 3.5 Sonnet and o3-mini manage the machine well in most runs and turn a profit, but all models have runs that derail, either through misinterpreting delivery schedules, forgetting orders, or descending into tangential "meltdown" loops from which they rarely recover. We find no clear correlation between failures and the point at which the model's context window becomes full, suggesting that these breakdowns do not stem from memory limits. Apart from highlighting the high variance in performance over long time horizons, Vending-Bench also tests models' ability to acquire capital, a necessity in many hypothetical dangerous AI scenarios. We hope the benchmark can help in preparing for the advent of stronger AI systems.
Deviation Dynamics in Cardinal Hedonic Games
Computing stable partitions in hedonic games is a challenging task because there exist games in which stable outcomes do not exist. Even more, these No-instances can often be leveraged to prove computational hardness results. We make this impression rigorous in a dynamic model of cardinal hedonic games by providing meta theorems. These imply hardness of deciding about the possible or necessary convergence of deviation dynamics based on the mere existence of No-instances. Our results hold for additively separable, fractional, and modified fractional hedonic games (ASHGs, FHGs, and MFHGs). Moreover, they encompass essentially all reasonable stability notions based on single-agent deviations. In addition, we propose dynamics as a method to find individually rational and contractually individual stable (CIS) partitions in ASHGs. In particular, we find that CIS dynamics from the singleton partition possibly converge after a linear number of deviations but may require an exponential number of deviations in the worst case.
TRADES: Generating Realistic Market Simulations with Diffusion Models
Financial markets are complex systems characterized by high statistical noise, nonlinearity, and constant evolution. Thus, modeling them is extremely hard. We address the task of generating realistic and responsive Limit Order Book (LOB) market simulations, which are fundamental for calibrating and testing trading strategies, performing market impact experiments, and generating synthetic market data. Previous works lack realism, usefulness, and responsiveness of the generated simulations. To bridge this gap, we propose a novel TRAnsformer-based Denoising Diffusion Probabilistic Engine for LOB Simulations (TRADES). TRADES generates realistic order flows conditioned on the state of the market, leveraging a transformer-based architecture that captures the temporal and spatial characteristics of high-frequency market data. There is a notable absence of quantitative metrics for evaluating generative market simulation models in the literature. To tackle this problem, we adapt the predictive score, a metric measured as an MAE, by training a stock price predictive model on synthetic data and testing it on real data. We compare TRADES with previous works on two stocks, reporting an x3.27 and x3.47 improvement over SoTA according to the predictive score, demonstrating that we generate useful synthetic market data for financial downstream tasks. We assess TRADES's market simulation realism and responsiveness, showing that it effectively learns the conditional data distribution and successfully reacts to an experimental agent, giving sprout to possible calibrations and evaluations of trading strategies and market impact experiments. We developed DeepMarket, the first open-source Python framework for market simulation with deep learning. Our repository includes a synthetic LOB dataset composed of TRADES's generates simulations. We release the code at github.com/LeonardoBerti00/DeepMarket.
Queueing Systems with Preferred Service Delivery Times and Multiple Customer Classes
Motivated by the operational problems in click and collect systems, such as curbside pickup programs, we study a joint admission control and capacity allocation problem. We consider a system where arriving customers have preferred service delivery times and gauge the service quality based on the service provider's ability to complete the service as close as possible to the preferred time. Customers can be of different priority classes, and their priority may increase as they wait longer in the queue. The service provider can reject customers upon their arrival if the system is overloaded or outsource the service (alternatively work overtime) when the capacity is not enough. The service provider's goal is to find the minimum-cost admission and capacity allocation policy to dynamically decide when to serve and whom to serve. We model this problem as a Markov Decision Process. Our structural results partially characterize a set of suboptimal solutions, and we develop solution methods using these results. We also develop a problem-specific approximation method that is based on state aggregation to overcome the computational challenges. We present extensive computational results and discuss the impact of problem parameters on the optimal policy.
TwinMarket: A Scalable Behavioral and Social Simulation for Financial Markets
The study of social emergence has long been a central focus in social science. Traditional modeling approaches, such as rule-based Agent-Based Models (ABMs), struggle to capture the diversity and complexity of human behavior, particularly the irrational factors emphasized in behavioral economics. Recently, large language model (LLM) agents have gained traction as simulation tools for modeling human behavior in social science and role-playing applications. Studies suggest that LLMs can account for cognitive biases, emotional fluctuations, and other non-rational influences, enabling more realistic simulations of socio-economic dynamics. In this work, we introduce TwinMarket, a novel multi-agent framework that leverages LLMs to simulate socio-economic systems. Specifically, we examine how individual behaviors, through interactions and feedback mechanisms, give rise to collective dynamics and emergent phenomena. Through experiments in a simulated stock market environment, we demonstrate how individual actions can trigger group behaviors, leading to emergent outcomes such as financial bubbles and recessions. Our approach provides valuable insights into the complex interplay between individual decision-making and collective socio-economic patterns.
Dynamic Customer Embeddings for Financial Service Applications
As financial services (FS) companies have experienced drastic technology driven changes, the availability of new data streams provides the opportunity for more comprehensive customer understanding. We propose Dynamic Customer Embeddings (DCE), a framework that leverages customers' digital activity and a wide range of financial context to learn dense representations of customers in the FS industry. Our method examines customer actions and pageviews within a mobile or web digital session, the sequencing of the sessions themselves, and snapshots of common financial features across our organization at the time of login. We test our customer embeddings using real world data in three prediction problems: 1) the intent of a customer in their next digital session, 2) the probability of a customer calling the call centers after a session, and 3) the probability of a digital session to be fraudulent. DCE showed performance lift in all three downstream problems.
