Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeFaceless Person Recognition; Privacy Implications in Social Media
As we shift more of our lives into the virtual domain, the volume of data shared on the web keeps increasing and presents a threat to our privacy. This works contributes to the understanding of privacy implications of such data sharing by analysing how well people are recognisable in social media data. To facilitate a systematic study we define a number of scenarios considering factors such as how many heads of a person are tagged and if those heads are obfuscated or not. We propose a robust person recognition system that can handle large variations in pose and clothing, and can be trained with few training samples. Our results indicate that a handful of images is enough to threaten users' privacy, even in the presence of obfuscation. We show detailed experimental results, and discuss their implications.
Doctors Handwritten Prescription Recognition System In Multi Language Using Deep Learning
Doctors typically write in incomprehensible handwriting, making it difficult for both the general public and some pharmacists to understand the medications they have prescribed. It is not ideal for them to write the prescription quietly and methodically because they will be dealing with dozens of patients every day and will be swamped with work.As a result, their handwriting is illegible. This may result in reports or prescriptions consisting of short forms and cursive writing that a typical person or pharmacist won't be able to read properly, which will cause prescribed medications to be misspelled. However, some individuals are accustomed to writing prescriptions in regional languages because we all live in an area with a diversity of regional languages. It makes analyzing the content much more challenging. So, in this project, we'll use a recognition system to build a tool that can translate the handwriting of physicians in any language. This system will be made into an application which is fully autonomous in functioning. As the user uploads the prescription image the program will pre-process the image by performing image pre-processing, and word segmentations initially before processing the image for training. And it will be done for every language we require the model to detect. And as of the deduction model will be made using deep learning techniques including CNN, RNN, and LSTM, which are utilized to train the model. To match words from various languages that will be written in the system, Unicode will be used. Furthermore, fuzzy search and market basket analysis are employed to offer an end result that will be optimized from the pharmaceutical database and displayed to the user as a structured output.
Pose is all you need: The pose only group activity recognition system (POGARS)
We introduce a novel deep learning based group activity recognition approach called the Pose Only Group Activity Recognition System (POGARS), designed to use only tracked poses of people to predict the performed group activity. In contrast to existing approaches for group activity recognition, POGARS uses 1D CNNs to learn spatiotemporal dynamics of individuals involved in a group activity and forgo learning features from pixel data. The proposed model uses a spatial and temporal attention mechanism to infer person-wise importance and multi-task learning for simultaneously performing group and individual action classification. Experimental results confirm that POGARS achieves highly competitive results compared to state-of-the-art methods on a widely used public volleyball dataset despite only using tracked pose as input. Further our experiments show by using pose only as input, POGARS has better generalization capabilities compared to methods that use RGB as input.
Bias in Multimodal AI: Testbed for Fair Automatic Recruitment
The presence of decision-making algorithms in society is rapidly increasing nowadays, while concerns about their transparency and the possibility of these algorithms becoming new sources of discrimination are arising. In fact, many relevant automated systems have been shown to make decisions based on sensitive information or discriminate certain social groups (e.g. certain biometric systems for person recognition). With the aim of studying how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data, we propose a fictitious automated recruitment testbed: FairCVtest. We train automatic recruitment algorithms using a set of multimodal synthetic profiles consciously scored with gender and racial biases. FairCVtest shows the capacity of the Artificial Intelligence (AI) behind such recruitment tool to extract sensitive information from unstructured data, and exploit it in combination to data biases in undesirable (unfair) ways. Finally, we present a list of recent works developing techniques capable of removing sensitive information from the decision-making process of deep learning architectures. We have used one of these algorithms (SensitiveNets) to experiment discrimination-aware learning for the elimination of sensitive information in our multimodal AI framework. Our methodology and results show how to generate fairer AI-based tools in general, and in particular fairer automated recruitment systems.
T2V-DDPM: Thermal to Visible Face Translation using Denoising Diffusion Probabilistic Models
Modern-day surveillance systems perform person recognition using deep learning-based face verification networks. Most state-of-the-art facial verification systems are trained using visible spectrum images. But, acquiring images in the visible spectrum is impractical in scenarios of low-light and nighttime conditions, and often images are captured in an alternate domain such as the thermal infrared domain. Facial verification in thermal images is often performed after retrieving the corresponding visible domain images. This is a well-established problem often known as the Thermal-to-Visible (T2V) image translation. In this paper, we propose a Denoising Diffusion Probabilistic Model (DDPM) based solution for T2V translation specifically for facial images. During training, the model learns the conditional distribution of visible facial images given their corresponding thermal image through the diffusion process. During inference, the visible domain image is obtained by starting from Gaussian noise and performing denoising repeatedly. The existing inference process for DDPMs is stochastic and time-consuming. Hence, we propose a novel inference strategy for speeding up the inference time of DDPMs, specifically for the problem of T2V image translation. We achieve the state-of-the-art results on multiple datasets. The code and pretrained models are publically available at http://github.com/Nithin-GK/T2V-DDPM
Arabic Handwritten Text for Person Biometric Identification: A Deep Learning Approach
This study thoroughly investigates how well deep learning models can recognize Arabic handwritten text for person biometric identification. It compares three advanced architectures -- ResNet50, MobileNetV2, and EfficientNetB7 -- using three widely recognized datasets: AHAWP, Khatt, and LAMIS-MSHD. Results show that EfficientNetB7 outperforms the others, achieving test accuracies of 98.57\%, 99.15\%, and 99.79\% on AHAWP, Khatt, and LAMIS-MSHD datasets, respectively. EfficientNetB7's exceptional performance is credited to its innovative techniques, including compound scaling, depth-wise separable convolutions, and squeeze-and-excitation blocks. These features allow the model to extract more abstract and distinctive features from handwritten text images. The study's findings hold significant implications for enhancing identity verification and authentication systems, highlighting the potential of deep learning in Arabic handwritten text recognition for person biometric identification.
Lumos : Empowering Multimodal LLMs with Scene Text Recognition
We introduce Lumos, the first end-to-end multimodal question-answering system with text understanding capabilities. At the core of Lumos is a Scene Text Recognition (STR) component that extracts text from first person point-of-view images, the output of which is used to augment input to a Multimodal Large Language Model (MM-LLM). While building Lumos, we encountered numerous challenges related to STR quality, overall latency, and model inference. In this paper, we delve into those challenges, and discuss the system architecture, design choices, and modeling techniques employed to overcome these obstacles. We also provide a comprehensive evaluation for each component, showcasing high quality and efficiency.
Enhancing Vehicle Entrance and Parking Management: Deep Learning Solutions for Efficiency and Security
The auto-management of vehicle entrance and parking in any organization is a complex challenge encompassing record-keeping, efficiency, and security concerns. Manual methods for tracking vehicles and finding parking spaces are slow and a waste of time. To solve the problem of auto management of vehicle entrance and parking, we have utilized state-of-the-art deep learning models and automated the process of vehicle entrance and parking into any organization. To ensure security, our system integrated vehicle detection, license number plate verification, and face detection and recognition models to ensure that the person and vehicle are registered with the organization. We have trained multiple deep-learning models for vehicle detection, license number plate detection, face detection, and recognition, however, the YOLOv8n model outperformed all the other models. Furthermore, License plate recognition is facilitated by Google's Tesseract-OCR Engine. By integrating these technologies, the system offers efficient vehicle detection, precise identification, streamlined record keeping, and optimized parking slot allocation in buildings, thereby enhancing convenience, accuracy, and security. Future research opportunities lie in fine-tuning system performance for a wide range of real-world applications.
SA-Person: Text-Based Person Retrieval with Scene-aware Re-ranking
Text-based person retrieval aims to identify a target individual from an image gallery using a natural language description. Existing methods primarily focus on appearance-driven cross-modal retrieval, yet face significant challenges due to the visual complexity of scenes and the inherent ambiguity of textual descriptions. The contextual information, such as landmarks and relational cues, provides complementary cues that can offer valuable complementary insights for retrieval, but remains underexploited in current approaches. Motivated by this limitation, we propose a novel paradigm: scene-aware text-based person retrieval, which explicitly integrates both individual appearance and global scene context to improve retrieval accuracy. To support this, we first introduce ScenePerson-13W, a large-scale benchmark dataset comprising over 100,000 real-world scenes with rich annotations encompassing both pedestrian attributes and scene context. Based on this dataset, we further present SA-Person, a two-stage retrieval framework. In the first stage, SA-Person performs discriminative appearance grounding by aligning textual descriptions with pedestrian-specific regions. In the second stage, it introduces SceneRanker, a training-free, scene-aware re-ranking module that refines retrieval results by jointly reasoning over pedestrian appearance and the global scene context. Extensive experiments on ScenePerson-13W and existing benchmarks demonstrate the effectiveness of our proposed SA-Person. Both the dataset and code will be publicly released to facilitate future research.
600k-ks-ocr: a large-scale synthetic dataset for optical character recognition in kashmiri script
This technical report presents the 600K-KS-OCR Dataset, a large-scale synthetic corpus comprising approximately 602,000 word-level segmented images designed for training and evaluating optical character recognition systems targeting Kashmiri script. The dataset addresses a critical resource gap for Kashmiri, an endangered Dardic language utilizing a modified Perso-Arabic writing system spoken by approximately seven million people. Each image is rendered at 256x64 pixels with corresponding ground-truth transcriptions provided in multiple formats compatible with CRNN, TrOCR, and generalpurpose machine learning pipelines. The generation methodology incorporates three traditional Kashmiri typefaces, comprehensive data augmentation simulating real-world document degradation, and diverse background textures to enhance model robustness. The dataset is distributed across ten partitioned archives totaling approximately 10.6 GB and is released under the CC-BY-4.0 license to facilitate research in low-resource language optical character recognition.
Interpretable Robot Control via Structured Behavior Trees and Large Language Models
As intelligent robots become more integrated into human environments, there is a growing need for intuitive and reliable Human-Robot Interaction (HRI) interfaces that are adaptable and more natural to interact with. Traditional robot control methods often require users to adapt to interfaces or memorize predefined commands, limiting usability in dynamic, unstructured environments. This paper presents a novel framework that bridges natural language understanding and robotic execution by combining Large Language Models (LLMs) with Behavior Trees. This integration enables robots to interpret natural language instructions given by users and translate them into executable actions by activating domain-specific plugins. The system supports scalable and modular integration, with a primary focus on perception-based functionalities, such as person tracking and hand gesture recognition. To evaluate the system, a series of real-world experiments was conducted across diverse environments. Experimental results demonstrate that the proposed approach is practical in real-world scenarios, with an average cognition-to-execution accuracy of approximately 94%, making a significant contribution to HRI systems and robots. The complete source code of the framework is publicly available at https://github.com/snt-arg/robot_suite.
Benchmarking Filtered Approximate Nearest Neighbor Search Algorithms on Transformer-based Embedding Vectors
Advances in embedding models for text, image, audio, and video drive progress across multiple domains, including retrieval-augmented generation, recommendation systems, vehicle/person reidentification, and face recognition. Many applications in these domains require an efficient method to retrieve items that are close to a given query in the embedding space while satisfying a filter condition based on the item's attributes, a problem known as Filtered Approximate Nearest Neighbor Search (FANNS). In this work, we present a comprehensive survey and taxonomy of FANNS methods and analyze how they are benchmarked in the literature. By doing so, we identify a key challenge in the current FANNS landscape: the lack of diverse and realistic datasets, particularly ones derived from the latest transformer-based text embedding models. To address this, we introduce a novel dataset consisting of embedding vectors for the abstracts of over 2.7 million research articles from the arXiv repository, accompanied by 11 real-world attributes such as authors and categories. We benchmark a wide range of FANNS methods on our novel dataset and find that each method has distinct strengths and limitations; no single approach performs best across all scenarios. ACORN, for example, supports various filter types and performs reliably across dataset scales but is often outperformed by more specialized methods. SeRF shows excellent performance for range filtering on ordered attributes but cannot handle categorical attributes. Filtered-DiskANN and UNG excel on the medium-scale dataset but fail on the large-scale dataset, highlighting the challenge posed by transformer-based embeddings, which are often more than an order of magnitude larger than earlier embeddings. We conclude that no universally best method exists.
iQIYI-VID: A Large Dataset for Multi-modal Person Identification
Person identification in the wild is very challenging due to great variation in poses, face quality, clothes, makeup and so on. Traditional research, such as face recognition, person re-identification, and speaker recognition, often focuses on a single modal of information, which is inadequate to handle all the situations in practice. Multi-modal person identification is a more promising way that we can jointly utilize face, head, body, audio features, and so on. In this paper, we introduce iQIYI-VID, the largest video dataset for multi-modal person identification. It is composed of 600K video clips of 5,000 celebrities. These video clips are extracted from 400K hours of online videos of various types, ranging from movies, variety shows, TV series, to news broadcasting. All video clips pass through a careful human annotation process, and the error rate of labels is lower than 0.2\%. We evaluated the state-of-art models of face recognition, person re-identification, and speaker recognition on the iQIYI-VID dataset. Experimental results show that these models are still far from being perfect for the task of person identification in the wild. We proposed a Multi-modal Attention module to fuse multi-modal features that can improve person identification considerably. We have released the dataset online to promote multi-modal person identification research.
CIFAR10 to Compare Visual Recognition Performance between Deep Neural Networks and Humans
Visual object recognition plays an essential role in human daily life. This ability is so efficient that we can recognize a face or an object seemingly without effort, though they may vary in position, scale, pose, and illumination. In the field of computer vision, a large number of studies have been carried out to build a human-like object recognition system. Recently, deep neural networks have shown impressive progress in object classification performance, and have been reported to surpass humans. Yet there is still lack of thorough and fair comparison between humans and artificial recognition systems. While some studies consider artificially degraded images, human recognition performance on dataset widely used for deep neural networks has not been fully evaluated. The present paper carries out an extensive experiment to evaluate human classification accuracy on CIFAR10, a well-known dataset of natural images. This then allows for a fair comparison with the state-of-the-art deep neural networks. Our CIFAR10-based evaluations show very efficient object recognition of recent CNNs but, at the same time, prove that they are still far from human-level capability of generalization. Moreover, a detailed investigation using multiple levels of difficulty reveals that easy images for humans may not be easy for deep neural networks. Such images form a subset of CIFAR10 that can be employed to evaluate and improve future neural networks.
Video Person Re-ID: Fantastic Techniques and Where to Find Them
The ability to identify the same person from multiple camera views without the explicit use of facial recognition is receiving commercial and academic interest. The current status-quo solutions are based on attention neural models. In this paper, we propose Attention and CL loss, which is a hybrid of center and Online Soft Mining (OSM) loss added to the attention loss on top of a temporal attention-based neural network. The proposed loss function applied with bag-of-tricks for training surpasses the state of the art on the common person Re-ID datasets, MARS and PRID 2011. Our source code is publicly available on github.
MovieNet-PS: A Large-Scale Person Search Dataset in the Wild
Person search aims to jointly localize and identify a query person from natural, uncropped images, which has been actively studied over the past few years. In this paper, we delve into the rich context information globally and locally surrounding the target person, which we refer to as scene and group context, respectively. Unlike previous works that treat the two types of context individually, we exploit them in a unified global-local context network (GLCNet) with the intuitive aim of feature enhancement. Specifically, re-ID embeddings and context features are simultaneously learned in a multi-stage fashion, ultimately leading to enhanced, discriminative features for person search. We conduct the experiments on two person search benchmarks (i.e., CUHK-SYSU and PRW) as well as extend our approach to a more challenging setting (i.e., character search on MovieNet). Extensive experimental results demonstrate the consistent improvement of the proposed GLCNet over the state-of-the-art methods on all three datasets. Our source codes, pre-trained models, and the new dataset are publicly available at: https://github.com/ZhengPeng7/GLCNet.
Person Re-identification by Contour Sketch under Moderate Clothing Change
Person re-identification (re-id), the process of matching pedestrian images across different camera views, is an important task in visual surveillance. Substantial development of re-id has recently been observed, and the majority of existing models are largely dependent on color appearance and assume that pedestrians do not change their clothes across camera views. This limitation, however, can be an issue for re-id when tracking a person at different places and at different time if that person (e.g., a criminal suspect) changes his/her clothes, causing most existing methods to fail, since they are heavily relying on color appearance and thus they are inclined to match a person to another person wearing similar clothes. In this work, we call the person re-id under clothing change the "cross-clothes person re-id". In particular, we consider the case when a person only changes his clothes moderately as a first attempt at solving this problem based on visible light images; that is we assume that a person wears clothes of a similar thickness, and thus the shape of a person would not change significantly when the weather does not change substantially within a short period of time. We perform cross-clothes person re-id based on a contour sketch of person image to take advantage of the shape of the human body instead of color information for extracting features that are robust to moderate clothing change. Due to the lack of a large-scale dataset for cross-clothes person re-id, we contribute a new dataset that consists of 33698 images from 221 identities. Our experiments illustrate the challenges of cross-clothes person re-id and demonstrate the effectiveness of our proposed method.
MARS: Paying more attention to visual attributes for text-based person search
Text-based person search (TBPS) is a problem that gained significant interest within the research community. The task is that of retrieving one or more images of a specific individual based on a textual description. The multi-modal nature of the task requires learning representations that bridge text and image data within a shared latent space. Existing TBPS systems face two major challenges. One is defined as inter-identity noise that is due to the inherent vagueness and imprecision of text descriptions and it indicates how descriptions of visual attributes can be generally associated to different people; the other is the intra-identity variations, which are all those nuisances e.g. pose, illumination, that can alter the visual appearance of the same textual attributes for a given subject. To address these issues, this paper presents a novel TBPS architecture named MARS (Mae-Attribute-Relation-Sensitive), which enhances current state-of-the-art models by introducing two key components: a Visual Reconstruction Loss and an Attribute Loss. The former employs a Masked AutoEncoder trained to reconstruct randomly masked image patches with the aid of the textual description. In doing so the model is encouraged to learn more expressive representations and textual-visual relations in the latent space. The Attribute Loss, instead, balances the contribution of different types of attributes, defined as adjective-noun chunks of text. This loss ensures that every attribute is taken into consideration in the person retrieval process. Extensive experiments on three commonly used datasets, namely CUHK-PEDES, ICFG-PEDES, and RSTPReid, report performance improvements, with significant gains in the mean Average Precision (mAP) metric w.r.t. the current state of the art.
Self-similarity Driven Scale-invariant Learning for Weakly Supervised Person Search
Weakly supervised person search aims to jointly detect and match persons with only bounding box annotations. Existing approaches typically focus on improving the features by exploring relations of persons. However, scale variation problem is a more severe obstacle and under-studied that a person often owns images with different scales (resolutions). On the one hand, small-scale images contain less information of a person, thus affecting the accuracy of the generated pseudo labels. On the other hand, the similarity of cross-scale images is often smaller than that of images with the same scale for a person, which will increase the difficulty of matching. In this paper, we address this problem by proposing a novel one-step framework, named Self-similarity driven Scale-invariant Learning (SSL). Scale invariance can be explored based on the self-similarity prior that it shows the same statistical properties of an image at different scales. To this end, we introduce a Multi-scale Exemplar Branch to guide the network in concentrating on the foreground and learning scale-invariant features by hard exemplars mining. To enhance the discriminative power of the features in an unsupervised manner, we introduce a dynamic multi-label prediction which progressively seeks true labels for training. It is adaptable to different types of unlabeled data and serves as a compensation for clustering based strategy. Experiments on PRW and CUHK-SYSU databases demonstrate the effectiveness of our method.
Preventing Errors in Person Detection: A Part-Based Self-Monitoring Framework
The ability to detect learned objects regardless of their appearance is crucial for autonomous systems in real-world applications. Especially for detecting humans, which is often a fundamental task in safety-critical applications, it is vital to prevent errors. To address this challenge, we propose a self-monitoring framework that allows for the perception system to perform plausibility checks at runtime. We show that by incorporating an additional component for detecting human body parts, we are able to significantly reduce the number of missed human detections by factors of up to 9 when compared to a baseline setup, which was trained only on holistic person objects. Additionally, we found that training a model jointly on humans and their body parts leads to a substantial reduction in false positive detections by up to 50% compared to training on humans alone. We performed comprehensive experiments on the publicly available datasets DensePose and Pascal VOC in order to demonstrate the effectiveness of our framework. Code is available at https://github.com/ FraunhoferIKS/smf-object-detection.
Automatic Synthetic Data and Fine-grained Adaptive Feature Alignment for Composed Person Retrieval
Person retrieval has attracted rising attention. Existing methods are mainly divided into two retrieval modes, namely image-only and text-only. However, they are unable to make full use of the available information and are difficult to meet diverse application requirements. To address the above limitations, we propose a new Composed Person Retrieval (CPR) task, which combines visual and textual queries to identify individuals of interest from large-scale person image databases. Nevertheless, the foremost difficulty of the CPR task is the lack of available annotated datasets. Therefore, we first introduce a scalable automatic data synthesis pipeline, which decomposes complex multimodal data generation into the creation of textual quadruples followed by identity-consistent image synthesis using fine-tuned generative models. Meanwhile, a multimodal filtering method is designed to ensure the resulting SynCPR dataset retains 1.15 million high-quality and fully synthetic triplets. Additionally, to improve the representation of composed person queries, we propose a novel Fine-grained Adaptive Feature Alignment (FAFA) framework through fine-grained dynamic alignment and masked feature reasoning. Moreover, for objective evaluation, we manually annotate the Image-Text Composed Person Retrieval (ITCPR) test set. The extensive experiments demonstrate the effectiveness of the SynCPR dataset and the superiority of the proposed FAFA framework when compared with the state-of-the-art methods. All code and data will be provided at https://github.com/Delong-liu-bupt/Composed_Person_Retrieval.
Few-Shot Adversarial Learning of Realistic Neural Talking Head Models
Several recent works have shown how highly realistic human head images can be obtained by training convolutional neural networks to generate them. In order to create a personalized talking head model, these works require training on a large dataset of images of a single person. However, in many practical scenarios, such personalized talking head models need to be learned from a few image views of a person, potentially even a single image. Here, we present a system with such few-shot capability. It performs lengthy meta-learning on a large dataset of videos, and after that is able to frame few- and one-shot learning of neural talking head models of previously unseen people as adversarial training problems with high capacity generators and discriminators. Crucially, the system is able to initialize the parameters of both the generator and the discriminator in a person-specific way, so that training can be based on just a few images and done quickly, despite the need to tune tens of millions of parameters. We show that such an approach is able to learn highly realistic and personalized talking head models of new people and even portrait paintings.
A robust, low-cost approach to Face Detection and Face Recognition
In the domain of Biometrics, recognition systems based on iris, fingerprint or palm print scans etc. are often considered more dependable due to extremely low variance in the properties of these entities with respect to time. However, over the last decade data processing capability of computers has increased manifold, which has made real-time video content analysis possible. This shows that the need of the hour is a robust and highly automated Face Detection and Recognition algorithm with credible accuracy rate. The proposed Face Detection and Recognition system using Discrete Wavelet Transform (DWT) accepts face frames as input from a database containing images from low cost devices such as VGA cameras, webcams or even CCTV's, where image quality is inferior. Face region is then detected using properties of L*a*b* color space and only Frontal Face is extracted such that all additional background is eliminated. Further, this extracted image is converted to grayscale and its dimensions are resized to 128 x 128 pixels. DWT is then applied to entire image to obtain the coefficients. Recognition is carried out by comparison of the DWT coefficients belonging to the test image with those of the registered reference image. On comparison, Euclidean distance classifier is deployed to validate the test image from the database. Accuracy for various levels of DWT Decomposition is obtained and hence, compared.
DyGait: Exploiting Dynamic Representations for High-performance Gait Recognition
Gait recognition is a biometric technology that recognizes the identity of humans through their walking patterns. Compared with other biometric technologies, gait recognition is more difficult to disguise and can be applied to the condition of long-distance without the cooperation of subjects. Thus, it has unique potential and wide application for crime prevention and social security. At present, most gait recognition methods directly extract features from the video frames to establish representations. However, these architectures learn representations from different features equally but do not pay enough attention to dynamic features, which refers to a representation of dynamic parts of silhouettes over time (e.g. legs). Since dynamic parts of the human body are more informative than other parts (e.g. bags) during walking, in this paper, we propose a novel and high-performance framework named DyGait. This is the first framework on gait recognition that is designed to focus on the extraction of dynamic features. Specifically, to take full advantage of the dynamic information, we propose a Dynamic Augmentation Module (DAM), which can automatically establish spatial-temporal feature representations of the dynamic parts of the human body. The experimental results show that our DyGait network outperforms other state-of-the-art gait recognition methods. It achieves an average Rank-1 accuracy of 71.4% on the GREW dataset, 66.3% on the Gait3D dataset, 98.4% on the CASIA-B dataset and 98.3% on the OU-MVLP dataset.
Active Self-Paced Learning for Cost-Effective and Progressive Face Identification
This paper aims to develop a novel cost-effective framework for face identification, which progressively maintains a batch of classifiers with the increasing face images of different individuals. By naturally combining two recently rising techniques: active learning (AL) and self-paced learning (SPL), our framework is capable of automatically annotating new instances and incorporating them into training under weak expert re-certification. We first initialize the classifier using a few annotated samples for each individual, and extract image features using the convolutional neural nets. Then, a number of candidates are selected from the unannotated samples for classifier updating, in which we apply the current classifiers ranking the samples by the prediction confidence. In particular, our approach utilizes the high-confidence and low-confidence samples in the self-paced and the active user-query way, respectively. The neural nets are later fine-tuned based on the updated classifiers. Such heuristic implementation is formulated as solving a concise active SPL optimization problem, which also advances the SPL development by supplementing a rational dynamic curriculum constraint. The new model finely accords with the "instructor-student-collaborative" learning mode in human education. The advantages of this proposed framework are two-folds: i) The required number of annotated samples is significantly decreased while the comparable performance is guaranteed. A dramatic reduction of user effort is also achieved over other state-of-the-art active learning techniques. ii) The mixture of SPL and AL effectively improves not only the classifier accuracy compared to existing AL/SPL methods but also the robustness against noisy data. We evaluate our framework on two challenging datasets, and demonstrate very promising results. (http://hcp.sysu.edu.cn/projects/aspl/)
Multi-Camera Industrial Open-Set Person Re-Identification and Tracking
In recent years, the development of deep learning approaches for the task of person re-identification led to impressive results. However, this comes with a limitation for industrial and practical real-world applications. Firstly, most of the existing works operate on closed-world scenarios, in which the people to re-identify (probes) are compared to a closed-set (gallery). Real-world scenarios often are open-set problems in which the gallery is not known a priori, but the number of open-set approaches in the literature is significantly lower. Secondly, challenges such as multi-camera setups, occlusions, real-time requirements, etc., further constrain the applicability of off-the-shelf methods. This work presents MICRO-TRACK, a Modular Industrial multi-Camera Re_identification and Open-set Tracking system that is real-time, scalable, and easy to integrate into existing industrial surveillance scenarios. Furthermore, we release a novel Re-ID and tracking dataset acquired in an industrial manufacturing facility, dubbed Facility-ReID, consisting of 18-minute videos captured by 8 surveillance cameras.
A Little Bit Attention Is All You Need for Person Re-Identification
Person re-identification plays a key role in applications where a mobile robot needs to track its users over a long period of time, even if they are partially unobserved for some time, in order to follow them or be available on demand. In this context, deep-learning based real-time feature extraction on a mobile robot is often performed on special-purpose devices whose computational resources are shared for multiple tasks. Therefore, the inference speed has to be taken into account. In contrast, person re-identification is often improved by architectural changes that come at the cost of significantly slowing down inference. Attention blocks are one such example. We will show that some well-performing attention blocks used in the state of the art are subject to inference costs that are far too high to justify their use for mobile robotic applications. As a consequence, we propose an attention block that only slightly affects the inference speed while keeping up with much deeper networks or more complex attention blocks in terms of re-identification accuracy. We perform extensive neural architecture search to derive rules at which locations this attention block should be integrated into the architecture in order to achieve the best trade-off between speed and accuracy. Finally, we confirm that the best performing configuration on a re-identification benchmark also performs well on an indoor robotic dataset.
Learning Generalisable Omni-Scale Representations for Person Re-Identification
An effective person re-identification (re-ID) model should learn feature representations that are both discriminative, for distinguishing similar-looking people, and generalisable, for deployment across datasets without any adaptation. In this paper, we develop novel CNN architectures to address both challenges. First, we present a re-ID CNN termed omni-scale network (OSNet) to learn features that not only capture different spatial scales but also encapsulate a synergistic combination of multiple scales, namely omni-scale features. The basic building block consists of multiple convolutional streams, each detecting features at a certain scale. For omni-scale feature learning, a unified aggregation gate is introduced to dynamically fuse multi-scale features with channel-wise weights. OSNet is lightweight as its building blocks comprise factorised convolutions. Second, to improve generalisable feature learning, we introduce instance normalisation (IN) layers into OSNet to cope with cross-dataset discrepancies. Further, to determine the optimal placements of these IN layers in the architecture, we formulate an efficient differentiable architecture search algorithm. Extensive experiments show that, in the conventional same-dataset setting, OSNet achieves state-of-the-art performance, despite being much smaller than existing re-ID models. In the more challenging yet practical cross-dataset setting, OSNet beats most recent unsupervised domain adaptation methods without using any target data. Our code and models are released at https://github.com/KaiyangZhou/deep-person-reid.
DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations
Existing person re-identification models often have low generalizability, which is mostly due to limited availability of large-scale labeled data in training. However, labeling large-scale training data is very expensive and time-consuming, while large-scale synthetic dataset shows promising value in learning generalizable person re-identification models. Therefore, in this paper a novel and practical person re-identification task is proposed,i.e. how to use labeled synthetic dataset and unlabeled real-world dataset to train a universal model. In this way, human annotations are no longer required, and it is scalable to large and diverse real-world datasets. To address the task, we introduce a framework with high generalizability, namely DomainMix. Specifically, the proposed method firstly clusters the unlabeled real-world images and selects the reliable clusters. During training, to address the large domain gap between two domains, a domain-invariant feature learning method is proposed, which introduces a new loss,i.e. domain balance loss, to conduct an adversarial learning between domain-invariant feature learning and domain discrimination, and meanwhile learns a discriminative feature for person re-identification. This way, the domain gap between synthetic and real-world data is much reduced, and the learned feature is generalizable thanks to the large-scale and diverse training data. Experimental results show that the proposed annotation-free method is more or less comparable to the counterpart trained with full human annotations, which is quite promising. In addition, it achieves the current state of the art on several person re-identification datasets under direct cross-dataset evaluation.
DynaMix: Generalizable Person Re-identification via Dynamic Relabeling and Mixed Data Sampling
Generalizable person re-identification (Re-ID) aims to recognize individuals across unseen cameras and environments. While existing methods rely heavily on limited labeled multi-camera data, we propose DynaMix, a novel method that effectively combines manually labeled multi-camera and large-scale pseudo-labeled single-camera data. Unlike prior works, DynaMix dynamically adapts to the structure and noise of the training data through three core components: (1) a Relabeling Module that refines pseudo-labels of single-camera identities on-the-fly; (2) an Efficient Centroids Module that maintains robust identity representations under a large identity space; and (3) a Data Sampling Module that carefully composes mixed data mini-batches to balance learning complexity and intra-batch diversity. All components are specifically designed to operate efficiently at scale, enabling effective training on millions of images and hundreds of thousands of identities. Extensive experiments demonstrate that DynaMix consistently outperforms state-of-the-art methods in generalizable person Re-ID.
Cross-video Identity Correlating for Person Re-identification Pre-training
Recent researches have proven that pre-training on large-scale person images extracted from internet videos is an effective way in learning better representations for person re-identification. However, these researches are mostly confined to pre-training at the instance-level or single-video tracklet-level. They ignore the identity-invariance in images of the same person across different videos, which is a key focus in person re-identification. To address this issue, we propose a Cross-video Identity-cOrrelating pre-traiNing (CION) framework. Defining a noise concept that comprehensively considers both intra-identity consistency and inter-identity discrimination, CION seeks the identity correlation from cross-video images by modeling it as a progressive multi-level denoising problem. Furthermore, an identity-guided self-distillation loss is proposed to implement better large-scale pre-training by mining the identity-invariance within person images. We conduct extensive experiments to verify the superiority of our CION in terms of efficiency and performance. CION achieves significantly leading performance with even fewer training samples. For example, compared with the previous state-of-the-art~ISR, CION with the same ResNet50-IBN achieves higher mAP of 93.3\% and 74.3\% on Market1501 and MSMT17, while only utilizing 8\% training samples. Finally, with CION demonstrating superior model-agnostic ability, we contribute a model zoo named ReIDZoo to meet diverse research and application needs in this field. It contains a series of CION pre-trained models with spanning structures and parameters, totaling 32 models with 10 different structures, including GhostNet, ConvNext, RepViT, FastViT and so on. The code and models will be made publicly available at https://github.com/Zplusdragon/CION_ReIDZoo.
MIDV-2019: Challenges of the modern mobile-based document OCR
Recognition of identity documents using mobile devices has become a topic of a wide range of computer vision research. The portfolio of methods and algorithms for solving such tasks as face detection, document detection and rectification, text field recognition, and other, is growing, and the scarcity of datasets has become an important issue. One of the openly accessible datasets for evaluating such methods is MIDV-500, containing video clips of 50 identity document types in various conditions. However, the variability of capturing conditions in MIDV-500 did not address some of the key issues, mainly significant projective distortions and different lighting conditions. In this paper we present a MIDV-2019 dataset, containing video clips shot with modern high-resolution mobile cameras, with strong projective distortions and with low lighting conditions. The description of the added data is presented, and experimental baselines for text field recognition in different conditions. The dataset is available for download at ftp://smartengines.com/midv-500/extra/midv-2019/.
A Mobile Robot Generating Video Summaries of Seniors' Indoor Activities
We develop a system which generates summaries from seniors' indoor-activity videos captured by a social robot to help remote family members know their seniors' daily activities at home. Unlike the traditional video summarization datasets, indoor videos captured from a moving robot poses additional challenges, namely, (i) the video sequences are very long (ii) a significant number of video-frames contain no-subject or with subjects at ill-posed locations and scales (iii) most of the well-posed frames contain highly redundant information. To address this problem, we propose to exploit pose estimation for detecting people in frames. This guides the robot to follow the user and capture effective videos. We use person identification to distinguish a target senior from other people. We also make use of action recognition to analyze seniors' major activities at different moments, and develop a video summarization method to select diverse and representative keyframes as summaries.
Learning Clothing and Pose Invariant 3D Shape Representation for Long-Term Person Re-Identification
Long-Term Person Re-Identification (LT-ReID) has become increasingly crucial in computer vision and biometrics. In this work, we aim to extend LT-ReID beyond pedestrian recognition to include a wider range of real-world human activities while still accounting for cloth-changing scenarios over large time gaps. This setting poses additional challenges due to the geometric misalignment and appearance ambiguity caused by the diversity of human pose and clothing. To address these challenges, we propose a new approach 3DInvarReID for (i) disentangling identity from non-identity components (pose, clothing shape, and texture) of 3D clothed humans, and (ii) reconstructing accurate 3D clothed body shapes and learning discriminative features of naked body shapes for person ReID in a joint manner. To better evaluate our study of LT-ReID, we collect a real-world dataset called CCDA, which contains a wide variety of human activities and clothing changes. Experimentally, we show the superior performance of our approach for person ReID.
CHIRLA: Comprehensive High-resolution Identification and Re-identification for Large-scale Analysis
Person re-identification (Re-ID) is a key challenge in computer vision, requiring the matching of individuals across cameras, locations, and time. While most research focuses on short-term scenarios with minimal appearance changes, real-world applications demand robust systems that handle long-term variations caused by clothing and physical changes. We present CHIRLA, Comprehensive High-resolution Identification and Re-identification for Large-scale Analysis, a novel dataset designed for video-based long-term person Re-ID. CHIRLA was recorded over seven months in four connected indoor environments using seven strategically placed cameras, capturing realistic movements with substantial clothing and appearance variability. The dataset includes 22 individuals, more than five hours of video, and about 1M bounding boxes with identity annotations obtained through semi-automatic labeling. We also define benchmark protocols for person tracking and Re-ID, covering diverse and challenging scenarios such as occlusion, reappearance, and multi-camera conditions. By introducing this comprehensive benchmark, we aim to facilitate the development and evaluation of Re-ID algorithms that can reliably perform in challenging, long-term real-world scenarios. The benchmark code is publicly available at: https://github.com/bdager/CHIRLA.
MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition
In this paper, we design a benchmark task and provide the associated datasets for recognizing face images and link them to corresponding entity keys in a knowledge base. More specifically, we propose a benchmark task to recognize one million celebrities from their face images, by using all the possibly collected face images of this individual on the web as training data. The rich information provided by the knowledge base helps to conduct disambiguation and improve the recognition accuracy, and contributes to various real-world applications, such as image captioning and news video analysis. Associated with this task, we design and provide concrete measurement set, evaluation protocol, as well as training data. We also present in details our experiment setup and report promising baseline results. Our benchmark task could lead to one of the largest classification problems in computer vision. To the best of our knowledge, our training dataset, which contains 10M images in version 1, is the largest publicly available one in the world.
Exploring Vision Language Models for Facial Attribute Recognition: Emotion, Race, Gender, and Age
Technologies for recognizing facial attributes like race, gender, age, and emotion have several applications, such as surveillance, advertising content, sentiment analysis, and the study of demographic trends and social behaviors. Analyzing demographic characteristics based on images and analyzing facial expressions have several challenges due to the complexity of humans' facial attributes. Traditional approaches have employed CNNs and various other deep learning techniques, trained on extensive collections of labeled images. While these methods demonstrated effective performance, there remains potential for further enhancements. In this paper, we propose to utilize vision language models (VLMs) such as generative pre-trained transformer (GPT), GEMINI, large language and vision assistant (LLAVA), PaliGemma, and Microsoft Florence2 to recognize facial attributes such as race, gender, age, and emotion from images with human faces. Various datasets like FairFace, AffectNet, and UTKFace have been utilized to evaluate the solutions. The results show that VLMs are competitive if not superior to traditional techniques. Additionally, we propose "FaceScanPaliGemma"--a fine-tuned PaliGemma model--for race, gender, age, and emotion recognition. The results show an accuracy of 81.1%, 95.8%, 80%, and 59.4% for race, gender, age group, and emotion classification, respectively, outperforming pre-trained version of PaliGemma, other VLMs, and SotA methods. Finally, we propose "FaceScanGPT", which is a GPT-4o model to recognize the above attributes when several individuals are present in the image using a prompt engineered for a person with specific facial and/or physical attributes. The results underscore the superior multitasking capability of FaceScanGPT to detect the individual's attributes like hair cut, clothing color, postures, etc., using only a prompt to drive the detection and recognition tasks.
Large-Scale Spatio-Temporal Person Re-identification: Algorithms and Benchmark
Person re-identification (re-ID) in the scenario with large spatial and temporal spans has not been fully explored. This is partially because that, existing benchmark datasets were mainly collected with limited spatial and temporal ranges, e.g., using videos recorded in a few days by cameras in a specific region of the campus. Such limited spatial and temporal ranges make it hard to simulate the difficulties of person re-ID in real scenarios. In this work, we contribute a novel Large-scale Spatio-Temporal LaST person re-ID dataset, including 10,862 identities with more than 228k images. Compared with existing datasets, LaST presents more challenging and high-diversity re-ID settings, and significantly larger spatial and temporal ranges. For instance, each person can appear in different cities or countries, and in various time slots from daytime to night, and in different seasons from spring to winter. To our best knowledge, LaST is a novel person re-ID dataset with the largest spatio-temporal ranges. Based on LaST, we verified its challenge by conducting a comprehensive performance evaluation of 14 re-ID algorithms. We further propose an easy-to-implement baseline that works well on such challenging re-ID setting. We also verified that models pre-trained on LaST can generalize well on existing datasets with short-term and cloth-changing scenarios. We expect LaST to inspire future works toward more realistic and challenging re-ID tasks. More information about the dataset is available at https://github.com/shuxjweb/last.git.
A Bidirectional Siamese Recurrent Neural Network for Accurate Gait Recognition Using Body Landmarks
Gait recognition is a significant biometric technique for person identification, particularly in scenarios where other physiological biometrics are impractical or ineffective. In this paper, we address the challenges associated with gait recognition and present a novel approach to improve its accuracy and reliability. The proposed method leverages advanced techniques, including sequential gait landmarks obtained through the Mediapipe pose estimation model, Procrustes analysis for alignment, and a Siamese biGRU-dualStack Neural Network architecture for capturing temporal dependencies. Extensive experiments were conducted on large-scale cross-view datasets to demonstrate the effectiveness of the approach, achieving high recognition accuracy compared to other models. The model demonstrated accuracies of 95.7%, 94.44%, 87.71%, and 86.6% on CASIA-B, SZU RGB-D, OU-MVLP, and Gait3D datasets respectively. The results highlight the potential applications of the proposed method in various practical domains, indicating its significant contribution to the field of gait recognition.
DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover's Distance Improves Out-Of-Distribution Face Identification
Face identification (FI) is ubiquitous and drives many high-stake decisions made by law enforcement. State-of-the-art FI approaches compare two images by taking the cosine similarity between their image embeddings. Yet, such an approach suffers from poor out-of-distribution (OOD) generalization to new types of images (e.g., when a query face is masked, cropped, or rotated) not included in the training set or the gallery. Here, we propose a re-ranking approach that compares two faces using the Earth Mover's Distance on the deep, spatial features of image patches. Our extra comparison stage explicitly examines image similarity at a fine-grained level (e.g., eyes to eyes) and is more robust to OOD perturbations and occlusions than traditional FI. Interestingly, without finetuning feature extractors, our method consistently improves the accuracy on all tested OOD queries: masked, cropped, rotated, and adversarial while obtaining similar results on in-distribution images.
From Poses to Identity: Training-Free Person Re-Identification via Feature Centralization
Person re-identification (ReID) aims to extract accurate identity representation features. However, during feature extraction, individual samples are inevitably affected by noise (background, occlusions, and model limitations). Considering that features from the same identity follow a normal distribution around identity centers after training, we propose a Training-Free Feature Centralization ReID framework (Pose2ID) by aggregating the same identity features to reduce individual noise and enhance the stability of identity representation, which preserves the feature's original distribution for following strategies such as re-ranking. Specifically, to obtain samples of the same identity, we introduce two components:Identity-Guided Pedestrian Generation: by leveraging identity features to guide the generation process, we obtain high-quality images with diverse poses, ensuring identity consistency even in complex scenarios such as infrared, and occlusion.Neighbor Feature Centralization: it explores each sample's potential positive samples from its neighborhood. Experiments demonstrate that our generative model exhibits strong generalization capabilities and maintains high identity consistency. With the Feature Centralization framework, we achieve impressive performance even with an ImageNet pre-trained model without ReID training, reaching mAP/Rank-1 of 52.81/78.92 on Market1501. Moreover, our method sets new state-of-the-art results across standard, cross-modality, and occluded ReID tasks, showcasing strong adaptability.
AI-based Wearable Vision Assistance System for the Visually Impaired: Integrating Real-Time Object Recognition and Contextual Understanding Using Large Vision-Language Models
Visual impairment affects the ability of people to live a life like normal people. Such people face challenges in performing activities of daily living, such as reading, writing, traveling and participating in social gatherings. Many traditional approaches are available to help visually impaired people; however, these are limited in obtaining contextually rich environmental information necessary for independent living. In order to overcome this limitation, this paper introduces a novel wearable vision assistance system that has a hat-mounted camera connected to a Raspberry Pi 4 Model B (8GB RAM) with artificial intelligence (AI) technology to deliver real-time feedback to a user through a sound beep mechanism. The key features of this system include a user-friendly procedure for the recognition of new people or objects through a one-click process that allows users to add data on new individuals and objects for later detection, enhancing the accuracy of the recognition over time. The system provides detailed descriptions of objects in the user's environment using a large vision language model (LVLM). In addition, it incorporates a distance sensor that activates a beeping sound using a buzzer as soon as the user is about to collide with an object, helping to ensure safety while navigating their environment. A comprehensive evaluation is carried out to evaluate the proposed AI-based solution against traditional support techniques. Comparative analysis shows that the proposed solution with its innovative combination of hardware and AI (including LVLMs with IoT), is a significant advancement in assistive technology that aims to solve the major issues faced by the community of visually impaired people
FaceChain: A Playground for Human-centric Artificial Intelligence Generated Content
Recent advancement in personalized image generation have unveiled the intriguing capability of pre-trained text-to-image models on learning identity information from a collection of portrait images. However, existing solutions are vulnerable in producing truthful details, and usually suffer from several defects such as (i) The generated face exhibit its own unique characteristics, \ie facial shape and facial feature positioning may not resemble key characteristics of the input, and (ii) The synthesized face may contain warped, blurred or corrupted regions. In this paper, we present FaceChain, a personalized portrait generation framework that combines a series of customized image-generation model and a rich set of face-related perceptual understanding models (\eg, face detection, deep face embedding extraction, and facial attribute recognition), to tackle aforementioned challenges and to generate truthful personalized portraits, with only a handful of portrait images as input. Concretely, we inject several SOTA face models into the generation procedure, achieving a more efficient label-tagging, data-processing, and model post-processing compared to previous solutions, such as DreamBooth ~ruiz2023dreambooth , InstantBooth ~shi2023instantbooth , or other LoRA-only approaches ~hu2021lora . Besides, based on FaceChain, we further develop several applications to build a broader playground for better showing its value, including virtual try on and 2D talking head. We hope it can grow to serve the burgeoning needs from the communities. Note that this is an ongoing work that will be consistently refined and improved upon. FaceChain is open-sourced under Apache-2.0 license at https://github.com/modelscope/facechain.
Face Recognition Using Discrete Cosine Transform for Global and Local Features
Face Recognition using Discrete Cosine Transform (DCT) for Local and Global Features involves recognizing the corresponding face image from the database. The face image obtained from the user is cropped such that only the frontal face image is extracted, eliminating the background. The image is restricted to a size of 128 x 128 pixels. All images in the database are gray level images. DCT is applied to the entire image. This gives DCT coefficients, which are global features. Local features such as eyes, nose and mouth are also extracted and DCT is applied to these features. Depending upon the recognition rate obtained for each feature, they are given weightage and then combined. Both local and global features are used for comparison. By comparing the ranks for global and local features, the false acceptance rate for DCT can be minimized.
How to Boost Face Recognition with StyleGAN?
State-of-the-art face recognition systems require vast amounts of labeled training data. Given the priority of privacy in face recognition applications, the data is limited to celebrity web crawls, which have issues such as limited numbers of identities. On the other hand, self-supervised revolution in the industry motivates research on the adaptation of related techniques to facial recognition. One of the most popular practical tricks is to augment the dataset by the samples drawn from generative models while preserving the identity. We show that a simple approach based on fine-tuning pSp encoder for StyleGAN allows us to improve upon the state-of-the-art facial recognition and performs better compared to training on synthetic face identities. We also collect large-scale unlabeled datasets with controllable ethnic constitution -- AfricanFaceSet-5M (5 million images of different people) and AsianFaceSet-3M (3 million images of different people) -- and we show that pretraining on each of them improves recognition of the respective ethnicities (as well as others), while combining all unlabeled datasets results in the biggest performance increase. Our self-supervised strategy is the most useful with limited amounts of labeled training data, which can be beneficial for more tailored face recognition tasks and when facing privacy concerns. Evaluation is based on a standard RFW dataset and a new large-scale RB-WebFace benchmark. The code and data are made publicly available at https://github.com/seva100/stylegan-for-facerec.
DIOR: Dataset for Indoor-Outdoor Reidentification -- Long Range 3D/2D Skeleton Gait Collection Pipeline, Semi-Automated Gait Keypoint Labeling and Baseline Evaluation Methods
In recent times, there is an increased interest in the identification and re-identification of people at long distances, such as from rooftop cameras, UAV cameras, street cams, and others. Such recognition needs to go beyond face and use whole-body markers such as gait. However, datasets to train and test such recognition algorithms are not widely prevalent, and fewer are labeled. This paper introduces DIOR -- a framework for data collection, semi-automated annotation, and also provides a dataset with 14 subjects and 1.649 million RGB frames with 3D/2D skeleton gait labels, including 200 thousands frames from a long range camera. Our approach leverages advanced 3D computer vision techniques to attain pixel-level accuracy in indoor settings with motion capture systems. Additionally, for outdoor long-range settings, we remove the dependency on motion capture systems and adopt a low-cost, hybrid 3D computer vision and learning pipeline with only 4 low-cost RGB cameras, successfully achieving precise skeleton labeling on far-away subjects, even when their height is limited to a mere 20-25 pixels within an RGB frame. On publication, we will make our pipeline open for others to use.
Beyond Appearance: a Semantic Controllable Self-Supervised Learning Framework for Human-Centric Visual Tasks
Human-centric visual tasks have attracted increasing research attention due to their widespread applications. In this paper, we aim to learn a general human representation from massive unlabeled human images which can benefit downstream human-centric tasks to the maximum extent. We call this method SOLIDER, a Semantic cOntrollable seLf-supervIseD lEaRning framework. Unlike the existing self-supervised learning methods, prior knowledge from human images is utilized in SOLIDER to build pseudo semantic labels and import more semantic information into the learned representation. Meanwhile, we note that different downstream tasks always require different ratios of semantic information and appearance information. For example, human parsing requires more semantic information, while person re-identification needs more appearance information for identification purpose. So a single learned representation cannot fit for all requirements. To solve this problem, SOLIDER introduces a conditional network with a semantic controller. After the model is trained, users can send values to the controller to produce representations with different ratios of semantic information, which can fit different needs of downstream tasks. Finally, SOLIDER is verified on six downstream human-centric visual tasks. It outperforms state of the arts and builds new baselines for these tasks. The code is released in https://github.com/tinyvision/SOLIDER.
VGGFace2: A dataset for recognising faces across pose and age
In this paper, we introduce a new large-scale face dataset named VGGFace2. The dataset contains 3.31 million images of 9131 subjects, with an average of 362.6 images for each subject. Images are downloaded from Google Image Search and have large variations in pose, age, illumination, ethnicity and profession (e.g. actors, athletes, politicians). The dataset was collected with three goals in mind: (i) to have both a large number of identities and also a large number of images for each identity; (ii) to cover a large range of pose, age and ethnicity; and (iii) to minimize the label noise. We describe how the dataset was collected, in particular the automated and manual filtering stages to ensure a high accuracy for the images of each identity. To assess face recognition performance using the new dataset, we train ResNet-50 (with and without Squeeze-and-Excitation blocks) Convolutional Neural Networks on VGGFace2, on MS- Celeb-1M, and on their union, and show that training on VGGFace2 leads to improved recognition performance over pose and age. Finally, using the models trained on these datasets, we demonstrate state-of-the-art performance on all the IARPA Janus face recognition benchmarks, e.g. IJB-A, IJB-B and IJB-C, exceeding the previous state-of-the-art by a large margin. Datasets and models are publicly available.
Unity is Strength: Unifying Convolutional and Transformeral Features for Better Person Re-Identification
Person Re-identification (ReID) aims to retrieve the specific person across non-overlapping cameras, which greatly helps intelligent transportation systems. As we all know, Convolutional Neural Networks (CNNs) and Transformers have the unique strengths to extract local and global features, respectively. Considering this fact, we focus on the mutual fusion between them to learn more comprehensive representations for persons. In particular, we utilize the complementary integration of deep features from different model structures. We propose a novel fusion framework called FusionReID to unify the strengths of CNNs and Transformers for image-based person ReID. More specifically, we first deploy a Dual-branch Feature Extraction (DFE) to extract features through CNNs and Transformers from a single image. Moreover, we design a novel Dual-attention Mutual Fusion (DMF) to achieve sufficient feature fusions. The DMF comprises Local Refinement Units (LRU) and Heterogenous Transmission Modules (HTM). LRU utilizes depth-separable convolutions to align deep features in channel dimensions and spatial sizes. HTM consists of a Shared Encoding Unit (SEU) and two Mutual Fusion Units (MFU). Through the continuous stacking of HTM, deep features after LRU are repeatedly utilized to generate more discriminative features. Extensive experiments on three public ReID benchmarks demonstrate that our method can attain superior performances than most state-of-the-arts. The source code is available at https://github.com/924973292/FusionReID.
MIDV-500: A Dataset for Identity Documents Analysis and Recognition on Mobile Devices in Video Stream
A lot of research has been devoted to identity documents analysis and recognition on mobile devices. However, no publicly available datasets designed for this particular problem currently exist. There are a few datasets which are useful for associated subtasks but in order to facilitate a more comprehensive scientific and technical approach to identity document recognition more specialized datasets are required. In this paper we present a Mobile Identity Document Video dataset (MIDV-500) consisting of 500 video clips for 50 different identity document types with ground truth which allows to perform research in a wide scope of document analysis problems. The paper presents characteristics of the dataset and evaluation results for existing methods of face detection, text line recognition, and document fields data extraction. Since an important feature of identity documents is their sensitiveness as they contain personal data, all source document images used in MIDV-500 are either in public domain or distributed under public copyright licenses. The main goal of this paper is to present a dataset. However, in addition and as a baseline, we present evaluation results for existing methods for face detection, text line recognition, and document data extraction, using the presented dataset. (The dataset is available for download at ftp://smartengines.com/midv-500/.)
PLIP: Language-Image Pre-training for Person Representation Learning
Language-image pre-training is an effective technique for learning powerful representations in general domains. However, when directly turning to person representation learning, these general pre-training methods suffer from unsatisfactory performance. The reason is that they neglect critical person-related characteristics, i.e., fine-grained attributes and identities. To address this issue, we propose a novel language-image pre-training framework for person representation learning, termed PLIP. Specifically, we elaborately design three pretext tasks: 1) Text-guided Image Colorization, aims to establish the correspondence between the person-related image regions and the fine-grained color-part textual phrases. 2) Image-guided Attributes Prediction, aims to mine fine-grained attribute information of the person body in the image; and 3) Identity-based Vision-Language Contrast, aims to correlate the cross-modal representations at the identity level rather than the instance level. Moreover, to implement our pre-train framework, we construct a large-scale person dataset with image-text pairs named SYNTH-PEDES by automatically generating textual annotations. We pre-train PLIP on SYNTH-PEDES and evaluate our models by spanning downstream person-centric tasks. PLIP not only significantly improves existing methods on all these tasks, but also shows great ability in the zero-shot and domain generalization settings. The code, dataset and weights will be released at~https://github.com/Zplusdragon/PLIP
DC-Former: Diverse and Compact Transformer for Person Re-Identification
In person re-identification (re-ID) task, it is still challenging to learn discriminative representation by deep learning, due to limited data. Generally speaking, the model will get better performance when increasing the amount of data. The addition of similar classes strengthens the ability of the classifier to identify similar identities, thereby improving the discrimination of representation. In this paper, we propose a Diverse and Compact Transformer (DC-Former) that can achieve a similar effect by splitting embedding space into multiple diverse and compact subspaces. Compact embedding subspace helps model learn more robust and discriminative embedding to identify similar classes. And the fusion of these diverse embeddings containing more fine-grained information can further improve the effect of re-ID. Specifically, multiple class tokens are used in vision transformer to represent multiple embedding spaces. Then, a self-diverse constraint (SDC) is applied to these spaces to push them away from each other, which makes each embedding space diverse and compact. Further, a dynamic weight controller(DWC) is further designed for balancing the relative importance among them during training. The experimental results of our method are promising, which surpass previous state-of-the-art methods on several commonly used person re-ID benchmarks.
Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image
Although significant improvement has been achieved recently in 3D human pose estimation, most of the previous methods only treat a single-person case. In this work, we firstly propose a fully learning-based, camera distance-aware top-down approach for 3D multi-person pose estimation from a single RGB image. The pipeline of the proposed system consists of human detection, absolute 3D human root localization, and root-relative 3D single-person pose estimation modules. Our system achieves comparable results with the state-of-the-art 3D single-person pose estimation models without any groundtruth information and significantly outperforms previous 3D multi-person pose estimation methods on publicly available datasets. The code is available in https://github.com/mks0601/3DMPPE_ROOTNET_RELEASE , https://github.com/mks0601/3DMPPE_POSENET_RELEASE.
Action in Mind: A Neural Network Approach to Action Recognition and Segmentation
Recognizing and categorizing human actions is an important task with applications in various fields such as human-robot interaction, video analysis, surveillance, video retrieval, health care system and entertainment industry. This thesis presents a novel computational approach for human action recognition through different implementations of multi-layer architectures based on artificial neural networks. Each system level development is designed to solve different aspects of the action recognition problem including online real-time processing, action segmentation and the involvement of objects. The analysis of the experimental results are illustrated and described in six articles. The proposed action recognition architecture of this thesis is composed of several processing layers including a preprocessing layer, an ordered vector representation layer and three layers of neural networks. It utilizes self-organizing neural networks such as Kohonen feature maps and growing grids as the main neural network layers. Thus the architecture presents a biological plausible approach with certain features such as topographic organization of the neurons, lateral interactions, semi-supervised learning and the ability to represent high dimensional input space in lower dimensional maps. For each level of development the system is trained with the input data consisting of consecutive 3D body postures and tested with generalized input data that the system has never met before. The experimental results of different system level developments show that the system performs well with quite high accuracy for recognizing human actions.
PersonLab: Person Pose Estimation and Instance Segmentation with a Bottom-Up, Part-Based, Geometric Embedding Model
We present a box-free bottom-up approach for the tasks of pose estimation and instance segmentation of people in multi-person images using an efficient single-shot model. The proposed PersonLab model tackles both semantic-level reasoning and object-part associations using part-based modeling. Our model employs a convolutional network which learns to detect individual keypoints and predict their relative displacements, allowing us to group keypoints into person pose instances. Further, we propose a part-induced geometric embedding descriptor which allows us to associate semantic person pixels with their corresponding person instance, delivering instance-level person segmentations. Our system is based on a fully-convolutional architecture and allows for efficient inference, with runtime essentially independent of the number of people present in the scene. Trained on COCO data alone, our system achieves COCO test-dev keypoint average precision of 0.665 using single-scale inference and 0.687 using multi-scale inference, significantly outperforming all previous bottom-up pose estimation systems. We are also the first bottom-up method to report competitive results for the person class in the COCO instance segmentation task, achieving a person category average precision of 0.417.
Automatic Detection and Recognition of Individuals in Patterned Species
Visual animal biometrics is rapidly gaining popularity as it enables a non-invasive and cost-effective approach for wildlife monitoring applications. Widespread usage of camera traps has led to large volumes of collected images, making manual processing of visual content hard to manage. In this work, we develop a framework for automatic detection and recognition of individuals in different patterned species like tigers, zebras and jaguars. Most existing systems primarily rely on manual input for localizing the animal, which does not scale well to large datasets. In order to automate the detection process while retaining robustness to blur, partial occlusion, illumination and pose variations, we use the recently proposed Faster-RCNN object detection framework to efficiently detect animals in images. We further extract features from AlexNet of the animal's flank and train a logistic regression (or Linear SVM) classifier to recognize the individuals. We primarily test and evaluate our framework on a camera trap tiger image dataset that contains images that vary in overall image quality, animal pose, scale and lighting. We also evaluate our recognition system on zebra and jaguar images to show generalization to other patterned species. Our framework gives perfect detection results in camera trapped tiger images and a similar or better individual recognition performance when compared with state-of-the-art recognition techniques.
DocFace: Matching ID Document Photos to Selfies
Numerous activities in our daily life, including transactions, access to services and transportation, require us to verify who we are by showing our ID documents containing face images, e.g. passports and driver licenses. An automatic system for matching ID document photos to live face images in real time with high accuracy would speedup the verification process and remove the burden on human operators. In this paper, by employing the transfer learning technique, we propose a new method, DocFace, to train a domain-specific network for ID document photo matching without a large dataset. Compared with the baseline of applying existing methods for general face recognition to this problem, our method achieves considerable improvement. A cross validation on an ID-Selfie dataset shows that DocFace improves the TAR from 61.14% to 92.77% at FAR=0.1%. Experimental results also indicate that given more training data, a viable system for automatic ID document photo matching can be developed and deployed.
In Defense of the Triplet Loss for Person Re-Identification
In the past few years, the field of computer vision has gone through a revolution fueled mainly by the advent of large datasets and the adoption of deep convolutional neural networks for end-to-end learning. The person re-identification subfield is no exception to this. Unfortunately, a prevailing belief in the community seems to be that the triplet loss is inferior to using surrogate losses (classification, verification) followed by a separate metric learning step. We show that, for models trained from scratch as well as pretrained ones, using a variant of the triplet loss to perform end-to-end deep metric learning outperforms most other published methods by a large margin.
Color Space Learning for Cross-Color Person Re-Identification
The primary color profile of the same identity is assumed to remain consistent in typical Person Re-identification (Person ReID) tasks. However, this assumption may be invalid in real-world situations and images hold variant color profiles, because of cross-modality cameras or identity with different clothing. To address this issue, we propose Color Space Learning (CSL) for those Cross-Color Person ReID problems. Specifically, CSL guides the model to be less color-sensitive with two modules: Image-level Color-Augmentation and Pixel-level Color-Transformation. The first module increases the color diversity of the inputs and guides the model to focus more on the non-color information. The second module projects every pixel of input images onto a new color space. In addition, we introduce a new Person ReID benchmark across RGB and Infrared modalities, NTU-Corridor, which is the first with privacy agreements from all participants. To evaluate the effectiveness and robustness of our proposed CSL, we evaluate it on several Cross-Color Person ReID benchmarks. Our method surpasses the state-of-the-art methods consistently. The code and benchmark are available at: https://github.com/niejiahao1998/CSL
PromptHMR: Promptable Human Mesh Recovery
Human pose and shape (HPS) estimation presents challenges in diverse scenarios such as crowded scenes, person-person interactions, and single-view reconstruction. Existing approaches lack mechanisms to incorporate auxiliary "side information" that could enhance reconstruction accuracy in such challenging scenarios. Furthermore, the most accurate methods rely on cropped person detections and cannot exploit scene context while methods that process the whole image often fail to detect people and are less accurate than methods that use crops. While recent language-based methods explore HPS reasoning through large language or vision-language models, their metric accuracy is well below the state of the art. In contrast, we present PromptHMR, a transformer-based promptable method that reformulates HPS estimation through spatial and semantic prompts. Our method processes full images to maintain scene context and accepts multiple input modalities: spatial prompts like bounding boxes and masks, and semantic prompts like language descriptions or interaction labels. PromptHMR demonstrates robust performance across challenging scenarios: estimating people from bounding boxes as small as faces in crowded scenes, improving body shape estimation through language descriptions, modeling person-person interactions, and producing temporally coherent motions in videos. Experiments on benchmarks show that PromptHMR achieves state-of-the-art performance while offering flexible prompt-based control over the HPS estimation process.
Referring to Any Person
Humans are undoubtedly the most important participants in computer vision, and the ability to detect any individual given a natural language description, a task we define as referring to any person, holds substantial practical value. However, we find that existing models generally fail to achieve real-world usability, and current benchmarks are limited by their focus on one-to-one referring, that hinder progress in this area. In this work, we revisit this task from three critical perspectives: task definition, dataset design, and model architecture. We first identify five aspects of referable entities and three distinctive characteristics of this task. Next, we introduce HumanRef, a novel dataset designed to tackle these challenges and better reflect real-world applications. From a model design perspective, we integrate a multimodal large language model with an object detection framework, constructing a robust referring model named RexSeek. Experimental results reveal that state-of-the-art models, which perform well on commonly used benchmarks like RefCOCO/+/g, struggle with HumanRef due to their inability to detect multiple individuals. In contrast, RexSeek not only excels in human referring but also generalizes effectively to common object referring, making it broadly applicable across various perception tasks. Code is available at https://github.com/IDEA-Research/RexSeek
Clothes-Changing Person Re-Identification with Feasibility-Aware Intermediary Matching
Current clothes-changing person re-identification (re-id) approaches usually perform retrieval based on clothes-irrelevant features, while neglecting the potential of clothes-relevant features. However, we observe that relying solely on clothes-irrelevant features for clothes-changing re-id is limited, since they often lack adequate identity information and suffer from large intra-class variations. On the contrary, clothes-relevant features can be used to discover same-clothes intermediaries that possess informative identity clues. Based on this observation, we propose a Feasibility-Aware Intermediary Matching (FAIM) framework to additionally utilize clothes-relevant features for retrieval. Firstly, an Intermediary Matching (IM) module is designed to perform an intermediary-assisted matching process. This process involves using clothes-relevant features to find informative intermediates, and then using clothes-irrelevant features of these intermediates to complete the matching. Secondly, in order to reduce the negative effect of low-quality intermediaries, an Intermediary-Based Feasibility Weighting (IBFW) module is designed to evaluate the feasibility of intermediary matching process by assessing the quality of intermediaries. Extensive experiments demonstrate that our method outperforms state-of-the-art methods on several widely-used clothes-changing re-id benchmarks.
A Rapid Test for Accuracy and Bias of Face Recognition Technology
Measuring the accuracy of face recognition (FR) systems is essential for improving performance and ensuring responsible use. Accuracy is typically estimated using large annotated datasets, which are costly and difficult to obtain. We propose a novel method for 1:1 face verification that benchmarks FR systems quickly and without manual annotation, starting from approximate labels (e.g., from web search results). Unlike previous methods for training set label cleaning, ours leverages the embedding representation of the models being evaluated, achieving high accuracy in smaller-sized test datasets. Our approach reliably estimates FR accuracy and ranking, significantly reducing the time and cost of manual labeling. We also introduce the first public benchmark of five FR cloud services, revealing demographic biases, particularly lower accuracy for Asian women. Our rapid test method can democratize FR testing, promoting scrutiny and responsible use of the technology. Our method is provided as a publicly accessible tool at https://github.com/caltechvisionlab/frt-rapid-test
Exploring Invariant Representation for Visible-Infrared Person Re-Identification
Cross-spectral person re-identification, which aims to associate identities to pedestrians across different spectra, faces a main challenge of the modality discrepancy. In this paper, we address the problem from both image-level and feature-level in an end-to-end hybrid learning framework named robust feature mining network (RFM). In particular, we observe that the reflective intensity of the same surface in photos shot in different wavelengths could be transformed using a linear model. Besides, we show the variable linear factor across the different surfaces is the main culprit which initiates the modality discrepancy. We integrate such a reflection observation into an image-level data augmentation by proposing the linear transformation generator (LTG). Moreover, at the feature level, we introduce a cross-center loss to explore a more compact intra-class distribution and modality-aware spatial attention to take advantage of textured regions more efficiently. Experiment results on two standard cross-spectral person re-identification datasets, i.e., RegDB and SYSU-MM01, have demonstrated state-of-the-art performance.
Multi-modal Multi-platform Person Re-Identification: Benchmark and Method
Conventional person re-identification (ReID) research is often limited to single-modality sensor data from static cameras, which fails to address the complexities of real-world scenarios where multi-modal signals are increasingly prevalent. For instance, consider an urban ReID system integrating stationary RGB cameras, nighttime infrared sensors, and UAVs equipped with dynamic tracking capabilities. Such systems face significant challenges due to variations in camera perspectives, lighting conditions, and sensor modalities, hindering effective person ReID. To address these challenges, we introduce the MP-ReID benchmark, a novel dataset designed specifically for multi-modality and multi-platform ReID. This benchmark uniquely compiles data from 1,930 identities across diverse modalities, including RGB, infrared, and thermal imaging, captured by both UAVs and ground-based cameras in indoor and outdoor environments. Building on this benchmark, we introduce Uni-Prompt ReID, a framework with specific-designed prompts, tailored for cross-modality and cross-platform scenarios. Our method consistently outperforms state-of-the-art approaches, establishing a robust foundation for future research in complex and dynamic ReID environments. Our dataset are available at:https://mp-reid.github.io/.
WIDER FACE: A Face Detection Benchmark
Face detection is one of the most studied topics in the computer vision community. Much of the progresses have been made by the availability of face detection benchmark datasets. We show that there is a gap between current face detection performance and the real world requirements. To facilitate future face detection research, we introduce the WIDER FACE dataset, which is 10 times larger than existing datasets. The dataset contains rich annotations, including occlusions, poses, event categories, and face bounding boxes. Faces in the proposed dataset are extremely challenging due to large variations in scale, pose and occlusion, as shown in Fig. 1. Furthermore, we show that WIDER FACE dataset is an effective training source for face detection. We benchmark several representative detection systems, providing an overview of state-of-the-art performance and propose a solution to deal with large scale variation. Finally, we discuss common failure cases that worth to be further investigated. Dataset can be downloaded at: mmlab.ie.cuhk.edu.hk/projects/WIDERFace
Deep Learning Applied to Image and Text Matching
The ability to describe images with natural language sentences is the hallmark for image and language understanding. Such a system has wide ranging applications such as annotating images and using natural sentences to search for images.In this project we focus on the task of bidirectional image retrieval: such asystem is capable of retrieving an image based on a sentence (image search) andretrieve sentence based on an image query (image annotation). We present asystem based on a global ranking objective function which uses a combinationof convolutional neural networks (CNN) and multi layer perceptrons (MLP).It takes a pair of image and sentence and processes them in different channels,finally embedding it into a common multimodal vector space. These embeddingsencode abstract semantic information about the two inputs and can be comparedusing traditional information retrieval approaches. For each such pair, the modelreturns a score which is interpretted as a similarity metric. If this score is high,the image and sentence are likely to convey similar meaning, and if the score is low then they are likely not to. The visual input is modeled via deep convolutional neural network. On theother hand we explore three models for the textual module. The first one isbag of words with an MLP. The second one uses n-grams (bigram, trigrams,and a combination of trigram & skip-grams) with an MLP. The third is morespecialized deep network specific for modeling variable length sequences (SSE).We report comparable performance to recent work in the field, even though ouroverall model is simpler. We also show that the training time choice of how wecan generate our negative samples has a significant impact on performance, and can be used to specialize the bi-directional system in one particular task.
Person Transfer GAN to Bridge Domain Gap for Person Re-Identification
Although the performance of person Re-Identification (ReID) has been significantly boosted, many challenging issues in real scenarios have not been fully investigated, e.g., the complex scenes and lighting variations, viewpoint and pose changes, and the large number of identities in a camera network. To facilitate the research towards conquering those issues, this paper contributes a new dataset called MSMT17 with many important features, e.g., 1) the raw videos are taken by an 15-camera network deployed in both indoor and outdoor scenes, 2) the videos cover a long period of time and present complex lighting variations, and 3) it contains currently the largest number of annotated identities, i.e., 4,101 identities and 126,441 bounding boxes. We also observe that, domain gap commonly exists between datasets, which essentially causes severe performance drop when training and testing on different datasets. This results in that available training data cannot be effectively leveraged for new testing domains. To relieve the expensive costs of annotating new training samples, we propose a Person Transfer Generative Adversarial Network (PTGAN) to bridge the domain gap. Comprehensive experiments show that the domain gap could be substantially narrowed-down by the PTGAN.
Towards Measuring Fairness in AI: the Casual Conversations Dataset
This paper introduces a novel dataset to help researchers evaluate their computer vision and audio models for accuracy across a diverse set of age, genders, apparent skin tones and ambient lighting conditions. Our dataset is composed of 3,011 subjects and contains over 45,000 videos, with an average of 15 videos per person. The videos were recorded in multiple U.S. states with a diverse set of adults in various age, gender and apparent skin tone groups. A key feature is that each subject agreed to participate for their likenesses to be used. Additionally, our age and gender annotations are provided by the subjects themselves. A group of trained annotators labeled the subjects' apparent skin tone using the Fitzpatrick skin type scale. Moreover, annotations for videos recorded in low ambient lighting are also provided. As an application to measure robustness of predictions across certain attributes, we provide a comprehensive study on the top five winners of the DeepFake Detection Challenge (DFDC). Experimental evaluation shows that the winning models are less performant on some specific groups of people, such as subjects with darker skin tones and thus may not generalize to all people. In addition, we also evaluate the state-of-the-art apparent age and gender classification methods. Our experiments provides a thorough analysis on these models in terms of fair treatment of people from various backgrounds.
Pose Recognition with Cascade Transformers
In this paper, we present a regression-based pose recognition method using cascade Transformers. One way to categorize the existing approaches in this domain is to separate them into 1). heatmap-based and 2). regression-based. In general, heatmap-based methods achieve higher accuracy but are subject to various heuristic designs (not end-to-end mostly), whereas regression-based approaches attain relatively lower accuracy but they have less intermediate non-differentiable steps. Here we utilize the encoder-decoder structure in Transformers to perform regression-based person and keypoint detection that is general-purpose and requires less heuristic design compared with the existing approaches. We demonstrate the keypoint hypothesis (query) refinement process across different self-attention layers to reveal the recursive self-attention mechanism in Transformers. In the experiments, we report competitive results for pose recognition when compared with the competing regression-based methods.
The P-DESTRE: A Fully Annotated Dataset for Pedestrian Detection, Tracking, Re-Identification and Search from Aerial Devices
Over the last decades, the world has been witnessing growing threats to the security in urban spaces, which has augmented the relevance given to visual surveillance solutions able to detect, track and identify persons of interest in crowds. In particular, unmanned aerial vehicles (UAVs) are a potential tool for this kind of analysis, as they provide a cheap way for data collection, cover large and difficult-to-reach areas, while reducing human staff demands. In this context, all the available datasets are exclusively suitable for the pedestrian re-identification problem, in which the multi-camera views per ID are taken on a single day, and allows the use of clothing appearance features for identification purposes. Accordingly, the main contributions of this paper are two-fold: 1) we announce the UAV-based P-DESTRE dataset, which is the first of its kind to provide consistent ID annotations across multiple days, making it suitable for the extremely challenging problem of person search, i.e., where no clothing information can be reliably used. Apart this feature, the P-DESTRE annotations enable the research on UAV-based pedestrian detection, tracking, re-identification and soft biometric solutions; and 2) we compare the results attained by state-of-the-art pedestrian detection, tracking, reidentification and search techniques in well-known surveillance datasets, to the effectiveness obtained by the same techniques in the P-DESTRE data. Such comparison enables to identify the most problematic data degradation factors of UAV-based data for each task, and can be used as baselines for subsequent advances in this kind of technology. The dataset and the full details of the empirical evaluation carried out are freely available at http://p-destre.di.ubi.pt/.
FaceNet: A Unified Embedding for Face Recognition and Clustering
Despite significant recent advances in the field of face recognition, implementing face verification and recognition efficiently at scale presents serious challenges to current approaches. In this paper we present a system, called FaceNet, that directly learns a mapping from face images to a compact Euclidean space where distances directly correspond to a measure of face similarity. Once this space has been produced, tasks such as face recognition, verification and clustering can be easily implemented using standard techniques with FaceNet embeddings as feature vectors. Our method uses a deep convolutional network trained to directly optimize the embedding itself, rather than an intermediate bottleneck layer as in previous deep learning approaches. To train, we use triplets of roughly aligned matching / non-matching face patches generated using a novel online triplet mining method. The benefit of our approach is much greater representational efficiency: we achieve state-of-the-art face recognition performance using only 128-bytes per face. On the widely used Labeled Faces in the Wild (LFW) dataset, our system achieves a new record accuracy of 99.63%. On YouTube Faces DB it achieves 95.12%. Our system cuts the error rate in comparison to the best published result by 30% on both datasets. We also introduce the concept of harmonic embeddings, and a harmonic triplet loss, which describe different versions of face embeddings (produced by different networks) that are compatible to each other and allow for direct comparison between each other.
11K Hands: Gender recognition and biometric identification using a large dataset of hand images
The human hand possesses distinctive features which can reveal gender information. In addition, the hand is considered one of the primary biometric traits used to identify a person. In this work, we propose a large dataset of human hand images (dorsal and palmar sides) with detailed ground-truth information for gender recognition and biometric identification. Using this dataset, a convolutional neural network (CNN) can be trained effectively for the gender recognition task. Based on this, we design a two-stream CNN to tackle the gender recognition problem. This trained model is then used as a feature extractor to feed a set of support vector machine classifiers for the biometric identification task. We show that the dorsal side of hand images, captured by a regular digital camera, convey effective distinctive features similar to, if not better, those available in the palmar hand images. To facilitate access to the proposed dataset and replication of our experiments, the dataset, trained CNN models, and Matlab source code are available at (https://goo.gl/rQJndd).
Face Recognition in the age of CLIP & Billion image datasets
CLIP (Contrastive Language-Image Pre-training) models developed by OpenAI have achieved outstanding results on various image recognition and retrieval tasks, displaying strong zero-shot performance. This means that they are able to perform effectively on tasks for which they have not been explicitly trained. Inspired by the success of OpenAI CLIP, a new publicly available dataset called LAION-5B was collected which resulted in the development of open ViT-H/14, ViT-G/14 models that outperform the OpenAI L/14 model. The LAION-5B dataset also released an approximate nearest neighbor index, with a web interface for search & subset creation. In this paper, we evaluate the performance of various CLIP models as zero-shot face recognizers. Our findings show that CLIP models perform well on face recognition tasks, but increasing the size of the CLIP model does not necessarily lead to improved accuracy. Additionally, we investigate the robustness of CLIP models against data poisoning attacks by testing their performance on poisoned data. Through this analysis, we aim to understand the potential consequences and misuse of search engines built using CLIP models, which could potentially function as unintentional face recognition engines.
I^2R-Net: Intra- and Inter-Human Relation Network for Multi-Person Pose Estimation
In this paper, we present the Intra- and Inter-Human Relation Networks (I^2R-Net) for Multi-Person Pose Estimation. It involves two basic modules. First, the Intra-Human Relation Module operates on a single person and aims to capture Intra-Human dependencies. Second, the Inter-Human Relation Module considers the relation between multiple instances and focuses on capturing Inter-Human interactions. The Inter-Human Relation Module can be designed very lightweight by reducing the resolution of feature map, yet learn useful relation information to significantly boost the performance of the Intra-Human Relation Module. Even without bells and whistles, our method can compete or outperform current competition winners. We conduct extensive experiments on COCO, CrowdPose, and OCHuman datasets. The results demonstrate that the proposed model surpasses all the state-of-the-art methods. Concretely, the proposed method achieves 77.4% AP on CrowPose dataset and 67.8% AP on OCHuman dataset respectively, outperforming existing methods by a large margin. Additionally, the ablation study and visualization analysis also prove the effectiveness of our model.
Humans in 4D: Reconstructing and Tracking Humans with Transformers
We present an approach to reconstruct humans and track them over time. At the core of our approach, we propose a fully "transformerized" version of a network for human mesh recovery. This network, HMR 2.0, advances the state of the art and shows the capability to analyze unusual poses that have in the past been difficult to reconstruct from single images. To analyze video, we use 3D reconstructions from HMR 2.0 as input to a tracking system that operates in 3D. This enables us to deal with multiple people and maintain identities through occlusion events. Our complete approach, 4DHumans, achieves state-of-the-art results for tracking people from monocular video. Furthermore, we demonstrate the effectiveness of HMR 2.0 on the downstream task of action recognition, achieving significant improvements over previous pose-based action recognition approaches. Our code and models are available on the project website: https://shubham-goel.github.io/4dhumans/.
AFIF4: Deep Gender Classification based on AdaBoost-based Fusion of Isolated Facial Features and Foggy Faces
Gender classification aims at recognizing a person's gender. Despite the high accuracy achieved by state-of-the-art methods for this task, there is still room for improvement in generalized and unrestricted datasets. In this paper, we advocate a new strategy inspired by the behavior of humans in gender recognition. Instead of dealing with the face image as a sole feature, we rely on the combination of isolated facial features and a holistic feature which we call the foggy face. Then, we use these features to train deep convolutional neural networks followed by an AdaBoost-based score fusion to infer the final gender class. We evaluate our method on four challenging datasets to demonstrate its efficacy in achieving better or on-par accuracy with state-of-the-art methods. In addition, we present a new face dataset that intensifies the challenges of occluded faces and illumination changes, which we believe to be a much-needed resource for gender classification research.
GaitMA: Pose-guided Multi-modal Feature Fusion for Gait Recognition
Gait recognition is a biometric technology that recognizes the identity of humans through their walking patterns. Existing appearance-based methods utilize CNN or Transformer to extract spatial and temporal features from silhouettes, while model-based methods employ GCN to focus on the special topological structure of skeleton points. However, the quality of silhouettes is limited by complex occlusions, and skeletons lack dense semantic features of the human body. To tackle these problems, we propose a novel gait recognition framework, dubbed Gait Multi-model Aggregation Network (GaitMA), which effectively combines two modalities to obtain a more robust and comprehensive gait representation for recognition. First, skeletons are represented by joint/limb-based heatmaps, and features from silhouettes and skeletons are respectively extracted using two CNN-based feature extractors. Second, a co-attention alignment module is proposed to align the features by element-wise attention. Finally, we propose a mutual learning module, which achieves feature fusion through cross-attention, Wasserstein loss is further introduced to ensure the effective fusion of two modalities. Extensive experimental results demonstrate the superiority of our model on Gait3D, OU-MVLP, and CASIA-B.
Text-Independent Speaker Recognition for Low SNR Environments with Encryption
Recognition systems are commonly designed to authenticate users at the access control levels of a system. A number of voice recognition methods have been developed using a pitch estimation process which are very vulnerable in low Signal to Noise Ratio (SNR) environments thus, these programs fail to provide the desired level of accuracy and robustness. Also, most text independent speaker recognition programs are incapable of coping with unauthorized attempts to gain access by tampering with the samples or reference database. The proposed text-independent voice recognition system makes use of multilevel cryptography to preserve data integrity while in transit or storage. Encryption and decryption follow a transform based approach layered with pseudorandom noise addition whereas for pitch detection, a modified version of the autocorrelation pitch extraction algorithm is used. The experimental results show that the proposed algorithm can decrypt the signal under test with exponentially reducing Mean Square Error over an increasing range of SNR. Further, it outperforms the conventional algorithms in actual identification tasks even in noisy environments. The recognition rate thus obtained using the proposed method is compared with other conventional methods used for speaker identification.
TUNI: A Textual Unimodal Detector for Identity Inference in CLIP Models
The widespread usage of large-scale multimodal models like CLIP has heightened concerns about the leakage of PII. Existing methods for identity inference in CLIP models require querying the model with full PII, including textual descriptions of the person and corresponding images (e.g., the name and the face photo of the person). However, applying images may risk exposing personal information to target models, as the image might not have been previously encountered by the target model. Additionally, previous MIAs train shadow models to mimic the behaviors of the target model, which incurs high computational costs, especially for large CLIP models. To address these challenges, we propose a textual unimodal detector (TUNI) in CLIP models, a novel technique for identity inference that: 1) only utilizes text data to query the target model; and 2) eliminates the need for training shadow models. Extensive experiments of TUNI across various CLIP model architectures and datasets demonstrate its superior performance over baselines, albeit with only text data.
VoxCeleb: a large-scale speaker identification dataset
Most existing datasets for speaker identification contain samples obtained under quite constrained conditions, and are usually hand-annotated, hence limited in size. The goal of this paper is to generate a large scale text-independent speaker identification dataset collected 'in the wild'. We make two contributions. First, we propose a fully automated pipeline based on computer vision techniques to create the dataset from open-source media. Our pipeline involves obtaining videos from YouTube; performing active speaker verification using a two-stream synchronization Convolutional Neural Network (CNN), and confirming the identity of the speaker using CNN based facial recognition. We use this pipeline to curate VoxCeleb which contains hundreds of thousands of 'real world' utterances for over 1,000 celebrities. Our second contribution is to apply and compare various state of the art speaker identification techniques on our dataset to establish baseline performance. We show that a CNN based architecture obtains the best performance for both identification and verification.
Count, Crop and Recognise: Fine-Grained Recognition in the Wild
The goal of this paper is to label all the animal individuals present in every frame of a video. Unlike previous methods that have principally concentrated on labelling face tracks, we aim to label individuals even when their faces are not visible. We make the following contributions: (i) we introduce a 'Count, Crop and Recognise' (CCR) multistage recognition process for frame level labelling. The Count and Recognise stages involve specialised CNNs for the task, and we show that this simple staging gives a substantial boost in performance; (ii) we compare the recall using frame based labelling to both face and body track based labelling, and demonstrate the advantage of frame based with CCR for the specified goal; (iii) we introduce a new dataset for chimpanzee recognition in the wild; and (iv) we apply a high-granularity visualisation technique to further understand the learned CNN features for the recognition of chimpanzee individuals.
Look into Person: Joint Body Parsing & Pose Estimation Network and A New Benchmark
Human parsing and pose estimation have recently received considerable interest due to their substantial application potentials. However, the existing datasets have limited numbers of images and annotations and lack a variety of human appearances and coverage of challenging cases in unconstrained environments. In this paper, we introduce a new benchmark named "Look into Person (LIP)" that provides a significant advancement in terms of scalability, diversity, and difficulty, which are crucial for future developments in human-centric analysis. This comprehensive dataset contains over 50,000 elaborately annotated images with 19 semantic part labels and 16 body joints, which are captured from a broad range of viewpoints, occlusions, and background complexities. Using these rich annotations, we perform detailed analyses of the leading human parsing and pose estimation approaches, thereby obtaining insights into the successes and failures of these methods. To further explore and take advantage of the semantic correlation of these two tasks, we propose a novel joint human parsing and pose estimation network to explore efficient context modeling, which can simultaneously predict parsing and pose with extremely high quality. Furthermore, we simplify the network to solve human parsing by exploring a novel self-supervised structure-sensitive learning approach, which imposes human pose structures into the parsing results without resorting to extra supervision. The dataset, code and models are available at http://www.sysu-hcp.net/lip/.
Foreground Object Search by Distilling Composite Image Feature
Foreground object search (FOS) aims to find compatible foreground objects for a given background image, producing realistic composite image. We observe that competitive retrieval performance could be achieved by using a discriminator to predict the compatibility of composite image, but this approach has unaffordable time cost. To this end, we propose a novel FOS method via distilling composite feature (DiscoFOS). Specifically, the abovementioned discriminator serves as teacher network. The student network employs two encoders to extract foreground feature and background feature. Their interaction output is enforced to match the composite image feature from the teacher network. Additionally, previous works did not release their datasets, so we contribute two datasets for FOS task: S-FOSD dataset with synthetic composite images and R-FOSD dataset with real composite images. Extensive experiments on our two datasets demonstrate the superiority of the proposed method over previous approaches. The dataset and code are available at https://github.com/bcmi/Foreground-Object-Search-Dataset-FOSD.
Guard Me If You Know Me: Protecting Specific Face-Identity from Deepfakes
Securing personal identity against deepfake attacks is increasingly critical in the digital age, especially for celebrities and political figures whose faces are easily accessible and frequently targeted. Most existing deepfake detection methods focus on general-purpose scenarios and often ignore the valuable prior knowledge of known facial identities, e.g., "VIP individuals" whose authentic facial data are already available. In this paper, we propose VIPGuard, a unified multimodal framework designed to capture fine-grained and comprehensive facial representations of a given identity, compare them against potentially fake or similar-looking faces, and reason over these comparisons to make accurate and explainable predictions. Specifically, our framework consists of three main stages. First, fine-tune a multimodal large language model (MLLM) to learn detailed and structural facial attributes. Second, we perform identity-level discriminative learning to enable the model to distinguish subtle differences between highly similar faces, including real and fake variations. Finally, we introduce user-specific customization, where we model the unique characteristics of the target face identity and perform semantic reasoning via MLLM to enable personalized and explainable deepfake detection. Our framework shows clear advantages over previous detection works, where traditional detectors mainly rely on low-level visual cues and provide no human-understandable explanations, while other MLLM-based models often lack a detailed understanding of specific face identities. To facilitate the evaluation of our method, we built a comprehensive identity-aware benchmark called VIPBench for personalized deepfake detection, involving the latest 7 face-swapping and 7 entire face synthesis techniques for generation.
Inserting Anybody in Diffusion Models via Celeb Basis
Exquisite demand exists for customizing the pretrained large text-to-image model, e.g., Stable Diffusion, to generate innovative concepts, such as the users themselves. However, the newly-added concept from previous customization methods often shows weaker combination abilities than the original ones even given several images during training. We thus propose a new personalization method that allows for the seamless integration of a unique individual into the pre-trained diffusion model using just one facial photograph and only 1024 learnable parameters under 3 minutes. So as we can effortlessly generate stunning images of this person in any pose or position, interacting with anyone and doing anything imaginable from text prompts. To achieve this, we first analyze and build a well-defined celeb basis from the embedding space of the pre-trained large text encoder. Then, given one facial photo as the target identity, we generate its own embedding by optimizing the weight of this basis and locking all other parameters. Empowered by the proposed celeb basis, the new identity in our customized model showcases a better concept combination ability than previous personalization methods. Besides, our model can also learn several new identities at once and interact with each other where the previous customization model fails to. The code will be released.
Deep Learning Technique for Human Parsing: A Survey and Outlook
Human parsing aims to partition humans in image or video into multiple pixel-level semantic parts. In the last decade, it has gained significantly increased interest in the computer vision community and has been utilized in a broad range of practical applications, from security monitoring, to social media, to visual special effects, just to name a few. Although deep learning-based human parsing solutions have made remarkable achievements, many important concepts, existing challenges, and potential research directions are still confusing. In this survey, we comprehensively review three core sub-tasks: single human parsing, multiple human parsing, and video human parsing, by introducing their respective task settings, background concepts, relevant problems and applications, representative literature, and datasets. We also present quantitative performance comparisons of the reviewed methods on benchmark datasets. Additionally, to promote sustainable development of the community, we put forward a transformer-based human parsing framework, providing a high-performance baseline for follow-up research through universal, concise, and extensible solutions. Finally, we point out a set of under-investigated open issues in this field and suggest new directions for future study. We also provide a regularly updated project page, to continuously track recent developments in this fast-advancing field: https://github.com/soeaver/awesome-human-parsing.
CCPA: Long-term Person Re-Identification via Contrastive Clothing and Pose Augmentation
Long-term Person Re-Identification (LRe-ID) aims at matching an individual across cameras after a long period of time, presenting variations in clothing, pose, and viewpoint. In this work, we propose CCPA: Contrastive Clothing and Pose Augmentation framework for LRe-ID. Beyond appearance, CCPA captures body shape information which is cloth-invariant using a Relation Graph Attention Network. Training a robust LRe-ID model requires a wide range of clothing variations and expensive cloth labeling, which is lacked in current LRe-ID datasets. To address this, we perform clothing and pose transfer across identities to generate images of more clothing variations and of different persons wearing similar clothing. The augmented batch of images serve as inputs to our proposed Fine-grained Contrastive Losses, which not only supervise the Re-ID model to learn discriminative person embeddings under long-term scenarios but also ensure in-distribution data generation. Results on LRe-ID datasets demonstrate the effectiveness of our CCPA framework.
Body Part-Based Representation Learning for Occluded Person Re-Identification
Occluded person re-identification (ReID) is a person retrieval task which aims at matching occluded person images with holistic ones. For addressing occluded ReID, part-based methods have been shown beneficial as they offer fine-grained information and are well suited to represent partially visible human bodies. However, training a part-based model is a challenging task for two reasons. Firstly, individual body part appearance is not as discriminative as global appearance (two distinct IDs might have the same local appearance), this means standard ReID training objectives using identity labels are not adapted to local feature learning. Secondly, ReID datasets are not provided with human topographical annotations. In this work, we propose BPBreID, a body part-based ReID model for solving the above issues. We first design two modules for predicting body part attention maps and producing body part-based features of the ReID target. We then propose GiLt, a novel training scheme for learning part-based representations that is robust to occlusions and non-discriminative local appearance. Extensive experiments on popular holistic and occluded datasets show the effectiveness of our proposed method, which outperforms state-of-the-art methods by 0.7% mAP and 5.6% rank-1 accuracy on the challenging Occluded-Duke dataset. Our code is available at https://github.com/VlSomers/bpbreid.
Torchreid: A Library for Deep Learning Person Re-Identification in Pytorch
Person re-identification (re-ID), which aims to re-identify people across different camera views, has been significantly advanced by deep learning in recent years, particularly with convolutional neural networks (CNNs). In this paper, we present Torchreid, a software library built on PyTorch that allows fast development and end-to-end training and evaluation of deep re-ID models. As a general-purpose framework for person re-ID research, Torchreid provides (1) unified data loaders that support 15 commonly used re-ID benchmark datasets covering both image and video domains, (2) streamlined pipelines for quick development and benchmarking of deep re-ID models, and (3) implementations of the latest re-ID CNN architectures along with their pre-trained models to facilitate reproducibility as well as future research. With a high-level modularity in its design, Torchreid offers a great flexibility to allow easy extension to new datasets, CNN models and loss functions.
CoMotion: Concurrent Multi-person 3D Motion
We introduce an approach for detecting and tracking detailed 3D poses of multiple people from a single monocular camera stream. Our system maintains temporally coherent predictions in crowded scenes filled with difficult poses and occlusions. Our model performs both strong per-frame detection and a learned pose update to track people from frame to frame. Rather than match detections across time, poses are updated directly from a new input image, which enables online tracking through occlusion. We train on numerous image and video datasets leveraging pseudo-labeled annotations to produce a model that matches state-of-the-art systems in 3D pose estimation accuracy while being faster and more accurate in tracking multiple people through time. Code and weights are provided at https://github.com/apple/ml-comotion
Rotation, Scaling and Translation Analysis of Biometric Signature Templates
Biometric authentication systems that make use of signature verification methods often render optimum performance only under limited and restricted conditions. Such methods utilize several training samples so as to achieve high accuracy. Moreover, several constraints are imposed on the end-user so that the system may work optimally, and as expected. For example, the user is made to sign within a small box, in order to limit their signature to a predefined set of dimensions, thus eliminating scaling. Moreover, the angular rotation with respect to the referenced signature that will be inadvertently introduced as human error, hampers performance of biometric signature verification systems. To eliminate this, traditionally, a user is asked to sign exactly on top of a reference line. In this paper, we propose a robust system that optimizes the signature obtained from the user for a large range of variation in Rotation-Scaling-Translation (RST) and resolves these error parameters in the user signature according to the reference signature stored in the database.
AuthentiSense: A Scalable Behavioral Biometrics Authentication Scheme using Few-Shot Learning for Mobile Platforms
Mobile applications are widely used for online services sharing a large amount of personal data online. One-time authentication techniques such as passwords and physiological biometrics (e.g., fingerprint, face, and iris) have their own advantages but also disadvantages since they can be stolen or emulated, and do not prevent access to the underlying device, once it is unlocked. To address these challenges, complementary authentication systems based on behavioural biometrics have emerged. The goal is to continuously profile users based on their interaction with the mobile device. However, existing behavioural authentication schemes are not (i) user-agnostic meaning that they cannot dynamically handle changes in the user-base without model re-training, or (ii) do not scale well to authenticate millions of users. In this paper, we present AuthentiSense, a user-agnostic, scalable, and efficient behavioural biometrics authentication system that enables continuous authentication and utilizes only motion patterns (i.e., accelerometer, gyroscope and magnetometer data) while users interact with mobile apps. Our approach requires neither manually engineered features nor a significant amount of data for model training. We leverage a few-shot learning technique, called Siamese network, to authenticate users at a large scale. We perform a systematic measurement study and report the impact of the parameters such as interaction time needed for authentication and n-shot verification (comparison with enrollment samples) at the recognition stage. Remarkably, AuthentiSense achieves high accuracy of up to 97% in terms of F1-score even when evaluated in a few-shot fashion that requires only a few behaviour samples per user (3 shots). Our approach accurately authenticates users only after 1 second of user interaction. For AuthentiSense, we report a FAR and FRR of 0.023 and 0.057, respectively.
Identity-Seeking Self-Supervised Representation Learning for Generalizable Person Re-identification
This paper aims to learn a domain-generalizable (DG) person re-identification (ReID) representation from large-scale videos without any annotation. Prior DG ReID methods employ limited labeled data for training due to the high cost of annotation, which restricts further advances. To overcome the barriers of data and annotation, we propose to utilize large-scale unsupervised data for training. The key issue lies in how to mine identity information. To this end, we propose an Identity-seeking Self-supervised Representation learning (ISR) method. ISR constructs positive pairs from inter-frame images by modeling the instance association as a maximum-weight bipartite matching problem. A reliability-guided contrastive loss is further presented to suppress the adverse impact of noisy positive pairs, ensuring that reliable positive pairs dominate the learning process. The training cost of ISR scales approximately linearly with the data size, making it feasible to utilize large-scale data for training. The learned representation exhibits superior generalization ability. Without human annotation and fine-tuning, ISR achieves 87.0\% Rank-1 on Market-1501 and 56.4\% Rank-1 on MSMT17, outperforming the best supervised domain-generalizable method by 5.0\% and 19.5\%, respectively. In the pre-trainingrightarrowfine-tuning scenario, ISR achieves state-of-the-art performance, with 88.4\% Rank-1 on MSMT17. The code is at https://github.com/dcp15/ISR_ICCV2023_Oral.
Cross-Modal Implicit Relation Reasoning and Aligning for Text-to-Image Person Retrieval
Text-to-image person retrieval aims to identify the target person based on a given textual description query. The primary challenge is to learn the mapping of visual and textual modalities into a common latent space. Prior works have attempted to address this challenge by leveraging separately pre-trained unimodal models to extract visual and textual features. However, these approaches lack the necessary underlying alignment capabilities required to match multimodal data effectively. Besides, these works use prior information to explore explicit part alignments, which may lead to the distortion of intra-modality information. To alleviate these issues, we present IRRA: a cross-modal Implicit Relation Reasoning and Aligning framework that learns relations between local visual-textual tokens and enhances global image-text matching without requiring additional prior supervision. Specifically, we first design an Implicit Relation Reasoning module in a masked language modeling paradigm. This achieves cross-modal interaction by integrating the visual cues into the textual tokens with a cross-modal multimodal interaction encoder. Secondly, to globally align the visual and textual embeddings, Similarity Distribution Matching is proposed to minimize the KL divergence between image-text similarity distributions and the normalized label matching distributions. The proposed method achieves new state-of-the-art results on all three public datasets, with a notable margin of about 3%-9% for Rank-1 accuracy compared to prior methods.
Towards an Efficient Voice Identification Using Wav2Vec2.0 and HuBERT Based on the Quran Reciters Dataset
Current authentication and trusted systems depend on classical and biometric methods to recognize or authorize users. Such methods include audio speech recognitions, eye, and finger signatures. Recent tools utilize deep learning and transformers to achieve better results. In this paper, we develop a deep learning constructed model for Arabic speakers identification by using Wav2Vec2.0 and HuBERT audio representation learning tools. The end-to-end Wav2Vec2.0 paradigm acquires contextualized speech representations learnings by randomly masking a set of feature vectors, and then applies a transformer neural network. We employ an MLP classifier that is able to differentiate between invariant labeled classes. We show several experimental results that safeguard the high accuracy of the proposed model. The experiments ensure that an arbitrary wave signal for a certain speaker can be identified with 98% and 97.1% accuracies in the cases of Wav2Vec2.0 and HuBERT, respectively.
Omni-Scale Feature Learning for Person Re-Identification
As an instance-level recognition problem, person re-identification (ReID) relies on discriminative features, which not only capture different spatial scales but also encapsulate an arbitrary combination of multiple scales. We call features of both homogeneous and heterogeneous scales omni-scale features. In this paper, a novel deep ReID CNN is designed, termed Omni-Scale Network (OSNet), for omni-scale feature learning. This is achieved by designing a residual block composed of multiple convolutional streams, each detecting features at a certain scale. Importantly, a novel unified aggregation gate is introduced to dynamically fuse multi-scale features with input-dependent channel-wise weights. To efficiently learn spatial-channel correlations and avoid overfitting, the building block uses pointwise and depthwise convolutions. By stacking such block layer-by-layer, our OSNet is extremely lightweight and can be trained from scratch on existing ReID benchmarks. Despite its small model size, OSNet achieves state-of-the-art performance on six person ReID datasets, outperforming most large-sized models, often by a clear margin. Code and models are available at: https://github.com/KaiyangZhou/deep-person-reid.
Learning Complex Non-Rigid Image Edits from Multimodal Conditioning
In this paper we focus on inserting a given human (specifically, a single image of a person) into a novel scene. Our method, which builds on top of Stable Diffusion, yields natural looking images while being highly controllable with text and pose. To accomplish this we need to train on pairs of images, the first a reference image with the person, the second a "target image" showing the same person (with a different pose and possibly in a different background). Additionally we require a text caption describing the new pose relative to that in the reference image. In this paper we present a novel dataset following this criteria, which we create using pairs of frames from human-centric and action-rich videos and employing a multimodal LLM to automatically summarize the difference in human pose for the text captions. We demonstrate that identity preservation is a more challenging task in scenes "in-the-wild", and especially scenes where there is an interaction between persons and objects. Combining the weak supervision from noisy captions, with robust 2D pose improves the quality of person-object interactions.
The More Secure, The Less Equally Usable: Gender and Ethnicity (Un)fairness of Deep Face Recognition along Security Thresholds
Face biometrics are playing a key role in making modern smart city applications more secure and usable. Commonly, the recognition threshold of a face recognition system is adjusted based on the degree of security for the considered use case. The likelihood of a match can be for instance decreased by setting a high threshold in case of a payment transaction verification. Prior work in face recognition has unfortunately showed that error rates are usually higher for certain demographic groups. These disparities have hence brought into question the fairness of systems empowered with face biometrics. In this paper, we investigate the extent to which disparities among demographic groups change under different security levels. Our analysis includes ten face recognition models, three security thresholds, and six demographic groups based on gender and ethnicity. Experiments show that the higher the security of the system is, the higher the disparities in usability among demographic groups are. Compelling unfairness issues hence exist and urge countermeasures in real-world high-stakes environments requiring severe security levels.
PeopleSansPeople: A Synthetic Data Generator for Human-Centric Computer Vision
In recent years, person detection and human pose estimation have made great strides, helped by large-scale labeled datasets. However, these datasets had no guarantees or analysis of human activities, poses, or context diversity. Additionally, privacy, legal, safety, and ethical concerns may limit the ability to collect more human data. An emerging alternative to real-world data that alleviates some of these issues is synthetic data. However, creation of synthetic data generators is incredibly challenging and prevents researchers from exploring their usefulness. Therefore, we release a human-centric synthetic data generator PeopleSansPeople which contains simulation-ready 3D human assets, a parameterized lighting and camera system, and generates 2D and 3D bounding box, instance and semantic segmentation, and COCO pose labels. Using PeopleSansPeople, we performed benchmark synthetic data training using a Detectron2 Keypoint R-CNN variant [1]. We found that pre-training a network using synthetic data and fine-tuning on various sizes of real-world data resulted in a keypoint AP increase of +38.03 (44.43 pm 0.17 vs. 6.40) for few-shot transfer (limited subsets of COCO-person train [2]), and an increase of +1.47 (63.47 pm 0.19 vs. 62.00) for abundant real data regimes, outperforming models trained with the same real data alone. We also found that our models outperformed those pre-trained with ImageNet with a keypoint AP increase of +22.53 (44.43 pm 0.17 vs. 21.90) for few-shot transfer and +1.07 (63.47 pm 0.19 vs. 62.40) for abundant real data regimes. This freely-available data generator should enable a wide range of research into the emerging field of simulation to real transfer learning in the critical area of human-centric computer vision.
Improving speaker verification robustness with synthetic emotional utterances
A speaker verification (SV) system offers an authentication service designed to confirm whether a given speech sample originates from a specific speaker. This technology has paved the way for various personalized applications that cater to individual preferences. A noteworthy challenge faced by SV systems is their ability to perform consistently across a range of emotional spectra. Most existing models exhibit high error rates when dealing with emotional utterances compared to neutral ones. Consequently, this phenomenon often leads to missing out on speech of interest. This issue primarily stems from the limited availability of labeled emotional speech data, impeding the development of robust speaker representations that encompass diverse emotional states. To address this concern, we propose a novel approach employing the CycleGAN framework to serve as a data augmentation method. This technique synthesizes emotional speech segments for each specific speaker while preserving the unique vocal identity. Our experimental findings underscore the effectiveness of incorporating synthetic emotional data into the training process. The models trained using this augmented dataset consistently outperform the baseline models on the task of verifying speakers in emotional speech scenarios, reducing equal error rate by as much as 3.64% relative.
Turn That Frown Upside Down: FaceID Customization via Cross-Training Data
Existing face identity (FaceID) customization methods perform well but are limited to generating identical faces as the input, while in real-world applications, users often desire images of the same person but with variations, such as different expressions (e.g., smiling, angry) or angles (e.g., side profile). This limitation arises from the lack of datasets with controlled input-output facial variations, restricting models' ability to learn effective modifications. To address this issue, we propose CrossFaceID, the first large-scale, high-quality, and publicly available dataset specifically designed to improve the facial modification capabilities of FaceID customization models. Specifically, CrossFaceID consists of 40,000 text-image pairs from approximately 2,000 persons, with each person represented by around 20 images showcasing diverse facial attributes such as poses, expressions, angles, and adornments. During the training stage, a specific face of a person is used as input, and the FaceID customization model is forced to generate another image of the same person but with altered facial features. This allows the FaceID customization model to acquire the ability to personalize and modify known facial features during the inference stage. Experiments show that models fine-tuned on the CrossFaceID dataset retain its performance in preserving FaceID fidelity while significantly improving its face customization capabilities. To facilitate further advancements in the FaceID customization field, our code, constructed datasets, and trained models are fully available to the public.
CLIP-SCGI: Synthesized Caption-Guided Inversion for Person Re-Identification
Person re-identification (ReID) has recently benefited from large pretrained vision-language models such as Contrastive Language-Image Pre-Training (CLIP). However, the absence of concrete descriptions necessitates the use of implicit text embeddings, which demand complicated and inefficient training strategies. To address this issue, we first propose one straightforward solution by leveraging existing image captioning models to generate pseudo captions for person images, and thereby boost person re-identification with large vision language models. Using models like the Large Language and Vision Assistant (LLAVA), we generate high-quality captions based on fixed templates that capture key semantic attributes such as gender, clothing, and age. By augmenting ReID training sets from uni-modality (image) to bi-modality (image and text), we introduce CLIP-SCGI, a simple yet effective framework that leverages synthesized captions to guide the learning of discriminative and robust representations. Built on CLIP, CLIP-SCGI fuses image and text embeddings through two modules to enhance the training process. To address quality issues in generated captions, we introduce a caption-guided inversion module that captures semantic attributes from images by converting relevant visual information into pseudo-word tokens based on the descriptions. This approach helps the model better capture key information and focus on relevant regions. The extracted features are then utilized in a cross-modal fusion module, guiding the model to focus on regions semantically consistent with the caption, thereby facilitating the optimization of the visual encoder to extract discriminative and robust representations. Extensive experiments on four popular ReID benchmarks demonstrate that CLIP-SCGI outperforms the state-of-the-art by a significant margin.
Learning Face Representation from Scratch
Pushing by big data and deep convolutional neural network (CNN), the performance of face recognition is becoming comparable to human. Using private large scale training datasets, several groups achieve very high performance on LFW, i.e., 97% to 99%. While there are many open source implementations of CNN, none of large scale face dataset is publicly available. The current situation in the field of face recognition is that data is more important than algorithm. To solve this problem, this paper proposes a semi-automatical way to collect face images from Internet and builds a large scale dataset containing about 10,000 subjects and 500,000 images, called CASIAWebFace. Based on the database, we use a 11-layer CNN to learn discriminative representation and obtain state-of-theart accuracy on LFW and YTF. The publication of CASIAWebFace will attract more research groups entering this field and accelerate the development of face recognition in the wild.
Mixed High-Order Attention Network for Person Re-Identification
Attention has become more attractive in person reidentification (ReID) as it is capable of biasing the allocation of available resources towards the most informative parts of an input signal. However, state-of-the-art works concentrate only on coarse or first-order attention design, e.g. spatial and channels attention, while rarely exploring higher-order attention mechanism. We take a step towards addressing this problem. In this paper, we first propose the High-Order Attention (HOA) module to model and utilize the complex and high-order statistics information in attention mechanism, so as to capture the subtle differences among pedestrians and to produce the discriminative attention proposals. Then, rethinking person ReID as a zero-shot learning problem, we propose the Mixed High-Order Attention Network (MHN) to further enhance the discrimination and richness of attention knowledge in an explicit manner. Extensive experiments have been conducted to validate the superiority of our MHN for person ReID over a wide variety of state-of-the-art methods on three large-scale datasets, including Market-1501, DukeMTMC-ReID and CUHK03-NP. Code is available at http://www.bhchen.cn/.
Can Foundation Models Predict Fitness for Duty?
Biometric capture devices have been utilised to estimate a person's alertness through near-infrared iris images, expanding their use beyond just biometric recognition. However, capturing a substantial number of corresponding images related to alcohol consumption, drug use, and sleep deprivation to create a dataset for training an AI model presents a significant challenge. Typically, a large quantity of images is required to effectively implement a deep learning approach. Currently, training downstream models with a huge number of images based on foundational models provides a real opportunity to enhance this area, thanks to the generalisation capabilities of self-supervised models. This work examines the application of deep learning and foundational models in predicting fitness for duty, which is defined as the subject condition related to determining the alertness for work.
Benchmarking Algorithmic Bias in Face Recognition: An Experimental Approach Using Synthetic Faces and Human Evaluation
We propose an experimental method for measuring bias in face recognition systems. Existing methods to measure bias depend on benchmark datasets that are collected in the wild and annotated for protected (e.g., race, gender) and non-protected (e.g., pose, lighting) attributes. Such observational datasets only permit correlational conclusions, e.g., "Algorithm A's accuracy is different on female and male faces in dataset X.". By contrast, experimental methods manipulate attributes individually and thus permit causal conclusions, e.g., "Algorithm A's accuracy is affected by gender and skin color." Our method is based on generating synthetic faces using a neural face generator, where each attribute of interest is modified independently while leaving all other attributes constant. Human observers crucially provide the ground truth on perceptual identity similarity between synthetic image pairs. We validate our method quantitatively by evaluating race and gender biases of three research-grade face recognition models. Our synthetic pipeline reveals that for these algorithms, accuracy is lower for Black and East Asian population subgroups. Our method can also quantify how perceptual changes in attributes affect face identity distances reported by these models. Our large synthetic dataset, consisting of 48,000 synthetic face image pairs (10,200 unique synthetic faces) and 555,000 human annotations (individual attributes and pairwise identity comparisons) is available to researchers in this important area.
The Vicomtech Spoofing-Aware Biometric System for the SASV Challenge
This paper describes our proposed integration system for the spoofing-aware speaker verification challenge. It consists of a robust spoofing-aware verification system that use the speaker verification and antispoofing embeddings extracted from specialized neural networks. First, an integration network, fed with the test utterance's speaker verification and spoofing embeddings, is used to compute a spoof-based score. This score is then linearly combined with the cosine similarity between the speaker verification embeddings from the enrollment and test utterances, thus obtaining the final scoring decision. Moreover, the integration network is trained using a one-class loss function to discriminate between target trials and unauthorized accesses. Our proposed system is evaluated in the ASVspoof19 database, exhibiting competitive performance compared to other integration approaches. In addition, we test, along with our integration approach, state of the art speaker verification and antispoofing systems based on self-supervised learning, yielding high-performance speech biometric systems.
End-to-End Text-Dependent Speaker Verification
In this paper we present a data-driven, integrated approach to speaker verification, which maps a test utterance and a few reference utterances directly to a single score for verification and jointly optimizes the system's components using the same evaluation protocol and metric as at test time. Such an approach will result in simple and efficient systems, requiring little domain-specific knowledge and making few model assumptions. We implement the idea by formulating the problem as a single neural network architecture, including the estimation of a speaker model on only a few utterances, and evaluate it on our internal "Ok Google" benchmark for text-dependent speaker verification. The proposed approach appears to be very effective for big data applications like ours that require highly accurate, easy-to-maintain systems with a small footprint.
Automatic Text-based Personality Recognition on Monologues and Multiparty Dialogues Using Attentive Networks and Contextual Embeddings
Previous works related to automatic personality recognition focus on using traditional classification models with linguistic features. However, attentive neural networks with contextual embeddings, which have achieved huge success in text classification, are rarely explored for this task. In this project, we have two major contributions. First, we create the first dialogue-based personality dataset, FriendsPersona, by annotating 5 personality traits of speakers from Friends TV Show through crowdsourcing. Second, we present a novel approach to automatic personality recognition using pre-trained contextual embeddings (BERT and RoBERTa) and attentive neural networks. Our models largely improve the state-of-art results on the monologue Essays dataset by 2.49%, and establish a solid benchmark on our FriendsPersona. By comparing results in two datasets, we demonstrate the challenges of modeling personality in multi-party dialogue.
BiLMa: Bidirectional Local-Matching for Text-based Person Re-identification
Text-based person re-identification (TBPReID) aims to retrieve person images represented by a given textual query. In this task, how to effectively align images and texts globally and locally is a crucial challenge. Recent works have obtained high performances by solving Masked Language Modeling (MLM) to align image/text parts. However, they only performed uni-directional (i.e., from image to text) local-matching, leaving room for improvement by introducing opposite-directional (i.e., from text to image) local-matching. In this work, we introduce Bidirectional Local-Matching (BiLMa) framework that jointly optimize MLM and Masked Image Modeling (MIM) in TBPReID model training. With this framework, our model is trained so as the labels of randomly masked both image and text tokens are predicted by unmasked tokens. In addition, to narrow the semantic gap between image and text in MIM, we propose Semantic MIM (SemMIM), in which the labels of masked image tokens are automatically given by a state-of-the-art human parser. Experimental results demonstrate that our BiLMa framework with SemMIM achieves state-of-the-art Rank@1 and mAP scores on three benchmarks.
Masked Attribute Description Embedding for Cloth-Changing Person Re-identification
Cloth-changing person re-identification (CC-ReID) aims to match persons who change clothes over long periods. The key challenge in CC-ReID is to extract clothing-independent features, such as face, hairstyle, body shape, and gait. Current research mainly focuses on modeling body shape using multi-modal biological features (such as silhouettes and sketches). However, it does not fully leverage the personal description information hidden in the original RGB image. Considering that there are certain attribute descriptions which remain unchanged after the changing of cloth, we propose a Masked Attribute Description Embedding (MADE) method that unifies personal visual appearance and attribute description for CC-ReID. Specifically, handling variable clothing-sensitive information, such as color and type, is challenging for effective modeling. To address this, we mask the clothing and color information in the personal attribute description extracted through an attribute detection model. The masked attribute description is then connected and embedded into Transformer blocks at various levels, fusing it with the low-level to high-level features of the image. This approach compels the model to discard clothing information. Experiments are conducted on several CC-ReID benchmarks, including PRCC, LTCC, Celeb-reID-light, and LaST. Results demonstrate that MADE effectively utilizes attribute description, enhancing cloth-changing person re-identification performance, and compares favorably with state-of-the-art methods. The code is available at https://github.com/moon-wh/MADE.
Localization Guided Learning for Pedestrian Attribute Recognition
Pedestrian attribute recognition has attracted many attentions due to its wide applications in scene understanding and person analysis from surveillance videos. Existing methods try to use additional pose, part or viewpoint information to complement the global feature representation for attribute classification. However, these methods face difficulties in localizing the areas corresponding to different attributes. To address this problem, we propose a novel Localization Guided Network which assigns attribute-specific weights to local features based on the affinity between proposals pre-extracted proposals and attribute locations. The advantage of our model is that our local features are learned automatically for each attribute and emphasized by the interaction with global features. We demonstrate the effectiveness of our Localization Guided Network on two pedestrian attribute benchmarks (PA-100K and RAP). Our result surpasses the previous state-of-the-art in all five metrics on both datasets.
Keypoint Promptable Re-Identification
Occluded Person Re-Identification (ReID) is a metric learning task that involves matching occluded individuals based on their appearance. While many studies have tackled occlusions caused by objects, multi-person occlusions remain less explored. In this work, we identify and address a critical challenge overlooked by previous occluded ReID methods: the Multi-Person Ambiguity (MPA) arising when multiple individuals are visible in the same bounding box, making it impossible to determine the intended ReID target among the candidates. Inspired by recent work on prompting in vision, we introduce Keypoint Promptable ReID (KPR), a novel formulation of the ReID problem that explicitly complements the input bounding box with a set of semantic keypoints indicating the intended target. Since promptable re-identification is an unexplored paradigm, existing ReID datasets lack the pixel-level annotations necessary for prompting. To bridge this gap and foster further research on this topic, we introduce Occluded-PoseTrack ReID, a novel ReID dataset with keypoints labels, that features strong inter-person occlusions. Furthermore, we release custom keypoint labels for four popular ReID benchmarks. Experiments on person retrieval, but also on pose tracking, demonstrate that our method systematically surpasses previous state-of-the-art approaches on various occluded scenarios. Our code, dataset and annotations are available at https://github.com/VlSomers/keypoint_promptable_reidentification.
CORE-ReID: Comprehensive Optimization and Refinement through Ensemble fusion in Domain Adaptation for person re-identification
This study introduces a novel framework, "Comprehensive Optimization and Refinement through Ensemble Fusion in Domain Adaptation for Person Re-identification (CORE-ReID)", to address an Unsupervised Domain Adaptation (UDA) for Person Re-identification (ReID). The framework utilizes CycleGAN to generate diverse data that harmonizes differences in image characteristics from different camera sources in the pre-training stage. In the fine-tuning stage, based on a pair of teacher-student networks, the framework integrates multi-view features for multi-level clustering to derive diverse pseudo labels. A learnable Ensemble Fusion component that focuses on fine-grained local information within global features is introduced to enhance learning comprehensiveness and avoid ambiguity associated with multiple pseudo-labels. Experimental results on three common UDAs in Person ReID demonstrate significant performance gains over state-of-the-art approaches. Additional enhancements, such as Efficient Channel Attention Block and Bidirectional Mean Feature Normalization mitigate deviation effects and adaptive fusion of global and local features using the ResNet-based model, further strengthening the framework. The proposed framework ensures clarity in fusion features, avoids ambiguity, and achieves high ac-curacy in terms of Mean Average Precision, Top-1, Top-5, and Top-10, positioning it as an advanced and effective solution for the UDA in Person ReID. Our codes and models are available at https://github.com/TrinhQuocNguyen/CORE-ReID.
PersonNeRF: Personalized Reconstruction from Photo Collections
We present PersonNeRF, a method that takes a collection of photos of a subject (e.g. Roger Federer) captured across multiple years with arbitrary body poses and appearances, and enables rendering the subject with arbitrary novel combinations of viewpoint, body pose, and appearance. PersonNeRF builds a customized neural volumetric 3D model of the subject that is able to render an entire space spanned by camera viewpoint, body pose, and appearance. A central challenge in this task is dealing with sparse observations; a given body pose is likely only observed by a single viewpoint with a single appearance, and a given appearance is only observed under a handful of different body poses. We address this issue by recovering a canonical T-pose neural volumetric representation of the subject that allows for changing appearance across different observations, but uses a shared pose-dependent motion field across all observations. We demonstrate that this approach, along with regularization of the recovered volumetric geometry to encourage smoothness, is able to recover a model that renders compelling images from novel combinations of viewpoint, pose, and appearance from these challenging unstructured photo collections, outperforming prior work for free-viewpoint human rendering.
Human Re-ID Meets LVLMs: What can we expect?
Large vision-language models (LVLMs) have been regarded as a breakthrough advance in an astoundingly variety of tasks, from content generation to virtual assistants and multimodal search or retrieval. However, for many of these applications, the performance of these methods has been widely criticized, particularly when compared with state-of-the-art methods and technologies in each specific domain. In this work, we compare the performance of the leading large vision-language models in the human re-identification task, using as baseline the performance attained by state-of-the-art AI models specifically designed for this problem. We compare the results due to ChatGPT-4o, Gemini-2.0-Flash, Claude 3.5 Sonnet, and Qwen-VL-Max to a baseline ReID PersonViT model, using the well-known Market1501 dataset. Our evaluation pipeline includes the dataset curation, prompt engineering, and metric selection to assess the models' performance. Results are analyzed from many different perspectives: similarity scores, classification accuracy, and classification metrics, including precision, recall, F1 score, and area under curve (AUC). Our results confirm the strengths of LVLMs, but also their severe limitations that often lead to catastrophic answers and should be the scope of further research. As a concluding remark, we speculate about some further research that should fuse traditional and LVLMs to combine the strengths from both families of techniques and achieve solid improvements in performance.
WebFace260M: A Benchmark Unveiling the Power of Million-Scale Deep Face Recognition
In this paper, we contribute a new million-scale face benchmark containing noisy 4M identities/260M faces (WebFace260M) and cleaned 2M identities/42M faces (WebFace42M) training data, as well as an elaborately designed time-constrained evaluation protocol. Firstly, we collect 4M name list and download 260M faces from the Internet. Then, a Cleaning Automatically utilizing Self-Training (CAST) pipeline is devised to purify the tremendous WebFace260M, which is efficient and scalable. To the best of our knowledge, the cleaned WebFace42M is the largest public face recognition training set and we expect to close the data gap between academia and industry. Referring to practical scenarios, Face Recognition Under Inference Time conStraint (FRUITS) protocol and a test set are constructed to comprehensively evaluate face matchers. Equipped with this benchmark, we delve into million-scale face recognition problems. A distributed framework is developed to train face recognition models efficiently without tampering with the performance. Empowered by WebFace42M, we reduce relative 40% failure rate on the challenging IJB-C set, and ranks the 3rd among 430 entries on NIST-FRVT. Even 10% data (WebFace4M) shows superior performance compared with public training set. Furthermore, comprehensive baselines are established on our rich-attribute test set under FRUITS-100ms/500ms/1000ms protocol, including MobileNet, EfficientNet, AttentionNet, ResNet, SENet, ResNeXt and RegNet families. Benchmark website is https://www.face-benchmark.org.
Rethinking Bias Mitigation: Fairer Architectures Make for Fairer Face Recognition
Face recognition systems are widely deployed in safety-critical applications, including law enforcement, yet they exhibit bias across a range of socio-demographic dimensions, such as gender and race. Conventional wisdom dictates that model biases arise from biased training data. As a consequence, previous works on bias mitigation largely focused on pre-processing the training data, adding penalties to prevent bias from effecting the model during training, or post-processing predictions to debias them, yet these approaches have shown limited success on hard problems such as face recognition. In our work, we discover that biases are actually inherent to neural network architectures themselves. Following this reframing, we conduct the first neural architecture search for fairness, jointly with a search for hyperparameters. Our search outputs a suite of models which Pareto-dominate all other high-performance architectures and existing bias mitigation methods in terms of accuracy and fairness, often by large margins, on the two most widely used datasets for face identification, CelebA and VGGFace2. Furthermore, these models generalize to other datasets and sensitive attributes. We release our code, models and raw data files at https://github.com/dooleys/FR-NAS.
