new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 18

ChaosBench: A Multi-Channel, Physics-Based Benchmark for Subseasonal-to-Seasonal Climate Prediction

Accurate prediction of climate in the subseasonal-to-seasonal scale is crucial for disaster readiness, reduced economic risk, and improved policy-making amidst climate change. Yet, S2S prediction remains challenging due to the chaotic nature of the system. At present, existing benchmarks for weather and climate applications, tend to (1) have shorter forecasting range of up-to 14 days, (2) do not include a wide range of operational baseline forecasts, and (3) lack physics-based constraints for explainability. Thus, we propose ChaosBench, a large-scale, multi-channel, physics-based benchmark for S2S prediction. ChaosBench has over 460K frames of real-world observations and simulations, each with 60 variable-channels and spanning for up-to 45 years. We also propose several physics-based, in addition to vision-based metrics, that enables for a more physically-consistent model. Furthermore, we include a diverse set of physics-based forecasts from 4 national weather agencies as baselines to our data-driven counterpart. We establish two tasks that vary in complexity: full and sparse dynamics prediction. Our benchmark is one of the first to perform large-scale evaluation on existing models including PanguWeather, FourCastNetV2, GraphCast, and ClimaX, and finds methods originally developed for weather-scale applications fails on S2S task. We release our benchmark code and datasets at https://leap-stc.github.io/ChaosBench.

  • 7 authors
·
Feb 1, 2024

REAL: Benchmarking Autonomous Agents on Deterministic Simulations of Real Websites

We introduce REAL, a benchmark and framework for multi-turn agent evaluations on deterministic simulations of real-world websites. REAL comprises high-fidelity, deterministic replicas of 11 widely-used websites across domains such as e-commerce, travel, communication, and professional networking. We also release a benchmark consisting of 112 practical tasks that mirror everyday complex user interactions requiring both accurate information retrieval and state-changing actions. All interactions occur within this fully controlled setting, eliminating safety risks and enabling robust, reproducible evaluation of agent capability and reliability. Our novel evaluation framework combines programmatic checks of website state for action-based tasks with rubric-guided LLM-based judgments for information retrieval. The framework supports both open-source and proprietary agent systems through a flexible evaluation harness that accommodates black-box commands within browser environments, allowing research labs to test agentic systems without modification. Our empirical results show that frontier language models achieve at most a 41% success rate on REAL, highlighting critical gaps in autonomous web navigation and task completion capabilities. Our framework supports easy integration of new tasks, reproducible evaluation, and scalable post-training data generation, marking a significant step forward in evaluating and advancing agent capabilities.

  • 18 authors
·
Apr 15, 2025

When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments

Can AI Agents simulate real-world trading environments to investigate the impact of external factors on stock trading activities (e.g., macroeconomics, policy changes, company fundamentals, and global events)? These factors, which frequently influence trading behaviors, are critical elements in the quest for maximizing investors' profits. Our work attempts to solve this problem through large language model based agents. We have developed a multi-agent AI system called StockAgent, driven by LLMs, designed to simulate investors' trading behaviors in response to the real stock market. The StockAgent allows users to evaluate the impact of different external factors on investor trading and to analyze trading behavior and profitability effects. Additionally, StockAgent avoids the test set leakage issue present in existing trading simulation systems based on AI Agents. Specifically, it prevents the model from leveraging prior knowledge it may have acquired related to the test data. We evaluate different LLMs under the framework of StockAgent in a stock trading environment that closely resembles real-world conditions. The experimental results demonstrate the impact of key external factors on stock market trading, including trading behavior and stock price fluctuation rules. This research explores the study of agents' free trading gaps in the context of no prior knowledge related to market data. The patterns identified through StockAgent simulations provide valuable insights for LLM-based investment advice and stock recommendation. The code is available at https://github.com/MingyuJ666/Stockagent.

  • 13 authors
·
Jul 15, 2024

RealPDEBench: A Benchmark for Complex Physical Systems with Real-World Data

Predicting the evolution of complex physical systems remains a central problem in science and engineering. Despite rapid progress in scientific Machine Learning (ML) models, a critical bottleneck is the lack of expensive real-world data, resulting in most current models being trained and validated on simulated data. Beyond limiting the development and evaluation of scientific ML, this gap also hinders research into essential tasks such as sim-to-real transfer. We introduce RealPDEBench, the first benchmark for scientific ML that integrates real-world measurements with paired numerical simulations. RealPDEBench consists of five datasets, three tasks, eight metrics, and ten baselines. We first present five real-world measured datasets with paired simulated datasets across different complex physical systems. We further define three tasks, which allow comparisons between real-world and simulated data, and facilitate the development of methods to bridge the two. Moreover, we design eight evaluation metrics, spanning data-oriented and physics-oriented metrics, and finally benchmark ten representative baselines, including state-of-the-art models, pretrained PDE foundation models, and a traditional method. Experiments reveal significant discrepancies between simulated and real-world data, while showing that pretraining with simulated data consistently improves both accuracy and convergence. In this work, we hope to provide insights from real-world data, advancing scientific ML toward bridging the sim-to-real gap and real-world deployment. Our benchmark, datasets, and instructions are available at https://realpdebench.github.io/.

  • 16 authors
·
Jan 5

EmbodiedCity: A Benchmark Platform for Embodied Agent in Real-world City Environment

Embodied artificial intelligence emphasizes the role of an agent's body in generating human-like behaviors. The recent efforts on EmbodiedAI pay a lot of attention to building up machine learning models to possess perceiving, planning, and acting abilities, thereby enabling real-time interaction with the world. However, most works focus on bounded indoor environments, such as navigation in a room or manipulating a device, with limited exploration of embodying the agents in open-world scenarios. That is, embodied intelligence in the open and outdoor environment is less explored, for which one potential reason is the lack of high-quality simulators, benchmarks, and datasets. To address it, in this paper, we construct a benchmark platform for embodied intelligence evaluation in real-world city environments. Specifically, we first construct a highly realistic 3D simulation environment based on the real buildings, roads, and other elements in a real city. In this environment, we combine historically collected data and simulation algorithms to conduct simulations of pedestrian and vehicle flows with high fidelity. Further, we designed a set of evaluation tasks covering different EmbodiedAI abilities. Moreover, we provide a complete set of input and output interfaces for access, enabling embodied agents to easily take task requirements and current environmental observations as input and then make decisions and obtain performance evaluations. On the one hand, it expands the capability of existing embodied intelligence to higher levels. On the other hand, it has a higher practical value in the real world and can support more potential applications for artificial general intelligence. Based on this platform, we evaluate some popular large language models for embodied intelligence capabilities of different dimensions and difficulties.

  • 12 authors
·
Oct 12, 2024

Sample-adaptive Augmentation for Point Cloud Recognition Against Real-world Corruptions

Robust 3D perception under corruption has become an essential task for the realm of 3D vision. While current data augmentation techniques usually perform random transformations on all point cloud objects in an offline way and ignore the structure of the samples, resulting in over-or-under enhancement. In this work, we propose an alternative to make sample-adaptive transformations based on the structure of the sample to cope with potential corruption via an auto-augmentation framework, named as AdaptPoint. Specially, we leverage a imitator, consisting of a Deformation Controller and a Mask Controller, respectively in charge of predicting deformation parameters and producing a per-point mask, based on the intrinsic structural information of the input point cloud, and then conduct corruption simulations on top. Then a discriminator is utilized to prevent the generation of excessive corruption that deviates from the original data distribution. In addition, a perception-guidance feedback mechanism is incorporated to guide the generation of samples with appropriate difficulty level. Furthermore, to address the paucity of real-world corrupted point cloud, we also introduce a new dataset ScanObjectNN-C, that exhibits greater similarity to actual data in real-world environments, especially when contrasted with preceding CAD datasets. Experiments show that our method achieves state-of-the-art results on multiple corruption benchmarks, including ModelNet-C, our ScanObjectNN-C, and ShapeNet-C.

  • 7 authors
·
Sep 19, 2023

Can Generative Agent-Based Modeling Replicate the Friendship Paradox in Social Media Simulations?

Generative Agent-Based Modeling (GABM) is an emerging simulation paradigm that combines the reasoning abilities of Large Language Models with traditional Agent-Based Modeling to replicate complex social behaviors, including interactions on social media. While prior work has focused on localized phenomena such as opinion formation and information spread, its potential to capture global network dynamics remains underexplored. This paper addresses this gap by analyzing GABM-based social media simulations through the lens of the Friendship Paradox (FP), a counterintuitive phenomenon where individuals, on average, have fewer friends than their friends. We propose a GABM framework for social media simulations, featuring generative agents that emulate real users with distinct personalities and interests. Using Twitter datasets on the US 2020 Election and the QAnon conspiracy, we show that the FP emerges naturally in GABM simulations. Consistent with real-world observations, the simulations unveil a hierarchical structure, where agents preferentially connect with others displaying higher activity or influence. Additionally, we find that infrequent connections primarily drive the FP, reflecting patterns in real networks. These findings validate GABM as a robust tool for modeling global social media phenomena and highlight its potential for advancing social science by enabling nuanced analysis of user behavior.

  • 4 authors
·
Feb 9, 2025

OASIS: Open Agent Social Interaction Simulations with One Million Agents

There has been a growing interest in enhancing rule-based agent-based models (ABMs) for social media platforms (i.e., X, Reddit) with more realistic large language model (LLM) agents, thereby allowing for a more nuanced study of complex systems. As a result, several LLM-based ABMs have been proposed in the past year. While they hold promise, each simulator is specifically designed to study a particular scenario, making it time-consuming and resource-intensive to explore other phenomena using the same ABM. Additionally, these models simulate only a limited number of agents, whereas real-world social media platforms involve millions of users. To this end, we propose OASIS, a generalizable and scalable social media simulator. OASIS is designed based on real-world social media platforms, incorporating dynamically updated environments (i.e., dynamic social networks and post information), diverse action spaces (i.e., following, commenting), and recommendation systems (i.e., interest-based and hot-score-based). Additionally, OASIS supports large-scale user simulations, capable of modeling up to one million users. With these features, OASIS can be easily extended to different social media platforms to study large-scale group phenomena and behaviors. We replicate various social phenomena, including information spreading, group polarization, and herd effects across X and Reddit platforms. Moreover, we provide observations of social phenomena at different agent group scales. We observe that the larger agent group scale leads to more enhanced group dynamics and more diverse and helpful agents' opinions. These findings demonstrate OASIS's potential as a powerful tool for studying complex systems in digital environments.

  • 23 authors
·
Nov 18, 2024

GASP: Gaussian Splatting for Physic-Based Simulations

Physics simulation is paramount for modeling and utilizing 3D scenes in various real-world applications. However, integrating with state-of-the-art 3D scene rendering techniques such as Gaussian Splatting (GS) remains challenging. Existing models use additional meshing mechanisms, including triangle or tetrahedron meshing, marching cubes, or cage meshes. Alternatively, we can modify the physics-grounded Newtonian dynamics to align with 3D Gaussian components. Current models take the first-order approximation of a deformation map, which locally approximates the dynamics by linear transformations. In contrast, our GS for Physics-Based Simulations (GASP) pipeline uses parametrized flat Gaussian distributions. Consequently, the problem of modeling Gaussian components using the physics engine is reduced to working with 3D points. In our work, we present additional rules for manipulating Gaussians, demonstrating how to adapt the pipeline to incorporate meshes, control Gaussian sizes during simulations, and enhance simulation efficiency. This is achieved through the Gaussian grouping strategy, which implements hierarchical structuring and enables simulations to be performed exclusively on selected Gaussians. The resulting solution can be integrated into any physics engine that can be treated as a black box. As demonstrated in our studies, the proposed pipeline exhibits superior performance on a diverse range of benchmark datasets designed for 3D object rendering. The project webpage, which includes additional visualizations, can be found at https://waczjoan.github.io/GASP.

  • 6 authors
·
Sep 9, 2024

CausalVerse: Benchmarking Causal Representation Learning with Configurable High-Fidelity Simulations

Causal Representation Learning (CRL) aims to uncover the data-generating process and identify the underlying causal variables and relations, whose evaluation remains inherently challenging due to the requirement of known ground-truth causal variables and causal structure. Existing evaluations often rely on either simplistic synthetic datasets or downstream performance on real-world tasks, generally suffering a dilemma between realism and evaluative precision. In this paper, we introduce a new benchmark for CRL using high-fidelity simulated visual data that retains both realistic visual complexity and, more importantly, access to ground-truth causal generating processes. The dataset comprises around 200 thousand images and 3 million video frames across 24 sub-scenes in four domains: static image generation, dynamic physical simulations, robotic manipulations, and traffic situation analysis. These scenarios range from static to dynamic settings, simple to complex structures, and single to multi-agent interactions, offering a comprehensive testbed that hopefully bridges the gap between rigorous evaluation and real-world applicability. In addition, we provide flexible access to the underlying causal structures, allowing users to modify or configure them to align with the required assumptions in CRL, such as available domain labels, temporal dependencies, or intervention histories. Leveraging this benchmark, we evaluated representative CRL methods across diverse paradigms and offered empirical insights to assist practitioners and newcomers in choosing or extending appropriate CRL frameworks to properly address specific types of real problems that can benefit from the CRL perspective. Welcome to visit our: Project page:https://causal-verse.github.io/, Dataset:https://huggingface.co/CausalVerse.

  • 7 authors
·
Oct 15, 2025

Thin-Shell Object Manipulations With Differentiable Physics Simulations

In this work, we aim to teach robots to manipulate various thin-shell materials. Prior works studying thin-shell object manipulation mostly rely on heuristic policies or learn policies from real-world video demonstrations, and only focus on limited material types and tasks (e.g., cloth unfolding). However, these approaches face significant challenges when extended to a wider variety of thin-shell materials and a diverse range of tasks. While virtual simulations are shown to be effective in diverse robot skill learning and evaluation, prior thin-shell simulation environments only support a subset of thin-shell materials, which also limits their supported range of tasks. We introduce ThinShellLab - a fully differentiable simulation platform tailored for robotic interactions with diverse thin-shell materials possessing varying material properties, enabling flexible thin-shell manipulation skill learning and evaluation. Our experiments suggest that manipulating thin-shell objects presents several unique challenges: 1) thin-shell manipulation relies heavily on frictional forces due to the objects' co-dimensional nature, 2) the materials being manipulated are highly sensitive to minimal variations in interaction actions, and 3) the constant and frequent alteration in contact pairs makes trajectory optimization methods susceptible to local optima, and neither standard reinforcement learning algorithms nor trajectory optimization methods (either gradient-based or gradient-free) are able to solve the tasks alone. To overcome these challenges, we present an optimization scheme that couples sampling-based trajectory optimization and gradient-based optimization, boosting both learning efficiency and converged performance across various proposed tasks. In addition, the differentiable nature of our platform facilitates a smooth sim-to-real transition.

  • 7 authors
·
Mar 30, 2024

Navigating the Digital World as Humans Do: Universal Visual Grounding for GUI Agents

Multimodal large language models (MLLMs) are transforming the capabilities of graphical user interface (GUI) agents, facilitating their transition from controlled simulations to complex, real-world applications across various platforms. However, the effectiveness of these agents hinges on the robustness of their grounding capability. Current GUI agents predominantly utilize text-based representations such as HTML or accessibility trees, which, despite their utility, often introduce noise, incompleteness, and increased computational overhead. In this paper, we advocate a human-like embodiment for GUI agents that perceive the environment entirely visually and directly take pixel-level operations on the GUI. The key is visual grounding models that can accurately map diverse referring expressions of GUI elements to their coordinates on the GUI across different platforms. We show that a simple recipe, which includes web-based synthetic data and slight adaptation of the LLaVA architecture, is surprisingly effective for training such visual grounding models. We collect the largest dataset for GUI visual grounding so far, containing 10M GUI elements and their referring expressions over 1.3M screenshots, and use it to train UGround, a strong universal visual grounding model for GUI agents. Empirical results on six benchmarks spanning three categories (grounding, offline agent, and online agent) show that 1) UGround substantially outperforms existing visual grounding models for GUI agents, by up to 20% absolute, and 2) agents with UGround outperform state-of-the-art agents, despite the fact that existing agents use additional text-based input while ours only uses visual perception. These results provide strong support for the feasibility and promises of GUI agents that navigate the digital world as humans do.

  • 8 authors
·
Oct 7, 2024 2

Unfolding Spatial Cognition: Evaluating Multimodal Models on Visual Simulations

Spatial cognition is essential for human intelligence, enabling problem-solving through visual simulations rather than solely relying on verbal reasoning. However, existing AI benchmarks primarily assess verbal reasoning, neglecting the complexities of non-verbal, multi-step visual simulation. We introduce STARE(Spatial Transformations and Reasoning Evaluation), a benchmark designed to rigorously evaluate multimodal large language models on tasks better solved through multi-step visual simulation. STARE features 4K tasks spanning foundational geometric transformations (2D and 3D), integrated spatial reasoning (cube net folding and tangram puzzles), and real-world spatial reasoning (perspective and temporal reasoning), reflecting practical cognitive challenges like object assembly, mechanical diagram interpretation, and everyday spatial navigation. Our evaluations show that models excel at reasoning over simpler 2D transformations, but perform close to random chance on more complex tasks like 3D cube net folding and tangram puzzles that require multi-step visual simulations. Humans achieve near-perfect accuracy but take considerable time (up to 28.9s) on complex tasks, significantly speeding up (down by 7.5 seconds on average) with intermediate visual simulations. In contrast, models exhibit inconsistent performance gains from visual simulations, improving on most tasks but declining in specific cases like tangram puzzles (GPT-4o, o1) and cube net folding (Claude-3.5, Gemini-2.0 Flash), indicating that models may not know how to effectively leverage intermediate visual information.

  • 8 authors
·
Jun 5, 2025 1

Impatient Users Confuse AI Agents: High-fidelity Simulations of Human Traits for Testing Agents

Despite rapid progress in building conversational AI agents, robustness is still largely untested. Small shifts in user behavior, such as being more impatient, incoherent, or skeptical, can cause sharp drops in agent performance, revealing how brittle current AI agents are. Today's benchmarks fail to capture this fragility: agents may perform well under standard evaluations but degrade spectacularly in more realistic and varied settings. We address this robustness testing gap by introducing TraitBasis, a lightweight, model-agnostic method for systematically stress testing AI agents. TraitBasis learns directions in activation space corresponding to steerable user traits (e.g., impatience or incoherence), which can be controlled, scaled, composed, and applied at inference time without any fine-tuning or extra data. Using TraitBasis, we extend tau-Bench to tau-Trait, where user behaviors are altered via controlled trait vectors. We observe on average a 2%-30% performance degradation on tau-Trait across frontier models, highlighting the lack of robustness of current AI agents to variations in user behavior. Together, these results highlight both the critical role of robustness testing and the promise of TraitBasis as a simple, data-efficient, and compositional tool. By powering simulation-driven stress tests and training loops, TraitBasis opens the door to building AI agents that remain reliable in the unpredictable dynamics of real-world human interactions. We have open-sourced tau-Trai across four domains: airline, retail, telecom, and telehealth, so the community can systematically QA their agents under realistic, behaviorally diverse intents and trait scenarios: https://github.com/collinear-ai/tau-trait.

  • 6 authors
·
Oct 6, 2025

Persistent self-supervised learning principle: from stereo to monocular vision for obstacle avoidance

Self-Supervised Learning (SSL) is a reliable learning mechanism in which a robot uses an original, trusted sensor cue for training to recognize an additional, complementary sensor cue. We study for the first time in SSL how a robot's learning behavior should be organized, so that the robot can keep performing its task in the case that the original cue becomes unavailable. We study this persistent form of SSL in the context of a flying robot that has to avoid obstacles based on distance estimates from the visual cue of stereo vision. Over time it will learn to also estimate distances based on monocular appearance cues. A strategy is introduced that has the robot switch from stereo vision based flight to monocular flight, with stereo vision purely used as 'training wheels' to avoid imminent collisions. This strategy is shown to be an effective approach to the 'feedback-induced data bias' problem as also experienced in learning from demonstration. Both simulations and real-world experiments with a stereo vision equipped AR drone 2.0 show the feasibility of this approach, with the robot successfully using monocular vision to avoid obstacles in a 5 x 5 room. The experiments show the potential of persistent SSL as a robust learning approach to enhance the capabilities of robots. Moreover, the abundant training data coming from the own sensors allows to gather large data sets necessary for deep learning approaches.

  • 5 authors
·
Mar 25, 2016

Online Control Barrier Functions for Decentralized Multi-Agent Navigation

Control barrier functions (CBFs) enable guaranteed safe multi-agent navigation in the continuous domain. The resulting navigation performance, however, is highly sensitive to the underlying hyperparameters. Traditional approaches consider fixed CBFs (where parameters are tuned apriori), and hence, typically do not perform well in cluttered and highly dynamic environments: conservative parameter values can lead to inefficient agent trajectories, or even failure to reach goal positions, whereas aggressive parameter values can lead to infeasible controls. To overcome these issues, in this paper, we propose online CBFs, whereby hyperparameters are tuned in real-time, as a function of what agents perceive in their immediate neighborhood. Since the explicit relationship between CBFs and navigation performance is hard to model, we leverage reinforcement learning to learn CBF-tuning policies in a model-free manner. Because we parameterize the policies with graph neural networks (GNNs), we are able to synthesize decentralized agent controllers that adjust parameter values locally, varying the degree of conservative and aggressive behaviors across agents. Simulations as well as real-world experiments show that (i) online CBFs are capable of solving navigation scenarios that are infeasible for fixed CBFs, and (ii), that they improve navigation performance by adapting to other agents and changes in the environment.

  • 3 authors
·
Mar 7, 2023

Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks

One major goal of the AI security community is to securely and reliably produce and deploy deep learning models for real-world applications. To this end, data poisoning based backdoor attacks on deep neural networks (DNNs) in the production stage (or training stage) and corresponding defenses are extensively explored in recent years. Ironically, backdoor attacks in the deployment stage, which can often happen in unprofessional users' devices and are thus arguably far more threatening in real-world scenarios, draw much less attention of the community. We attribute this imbalance of vigilance to the weak practicality of existing deployment-stage backdoor attack algorithms and the insufficiency of real-world attack demonstrations. To fill the blank, in this work, we study the realistic threat of deployment-stage backdoor attacks on DNNs. We base our study on a commonly used deployment-stage attack paradigm -- adversarial weight attack, where adversaries selectively modify model weights to embed backdoor into deployed DNNs. To approach realistic practicality, we propose the first gray-box and physically realizable weights attack algorithm for backdoor injection, namely subnet replacement attack (SRA), which only requires architecture information of the victim model and can support physical triggers in the real world. Extensive experimental simulations and system-level real-world attack demonstrations are conducted. Our results not only suggest the effectiveness and practicality of the proposed attack algorithm, but also reveal the practical risk of a novel type of computer virus that may widely spread and stealthily inject backdoor into DNN models in user devices. By our study, we call for more attention to the vulnerability of DNNs in the deployment stage.

  • 6 authors
·
Nov 25, 2021

GeoManip: Geometric Constraints as General Interfaces for Robot Manipulation

We present GeoManip, a framework to enable generalist robots to leverage essential conditions derived from object and part relationships, as geometric constraints, for robot manipulation. For example, cutting the carrot requires adhering to a geometric constraint: the blade of the knife should be perpendicular to the carrot's direction. By interpreting these constraints through symbolic language representations and translating them into low-level actions, GeoManip bridges the gap between natural language and robotic execution, enabling greater generalizability across diverse even unseen tasks, objects, and scenarios. Unlike vision-language-action models that require extensive training, operates training-free by utilizing large foundational models: a constraint generation module that predicts stage-specific geometric constraints and a geometry parser that identifies object parts involved in these constraints. A solver then optimizes trajectories to satisfy inferred constraints from task descriptions and the scene. Furthermore, GeoManip learns in-context and provides five appealing human-robot interaction features: on-the-fly policy adaptation, learning from human demonstrations, learning from failure cases, long-horizon action planning, and efficient data collection for imitation learning. Extensive evaluations on both simulations and real-world scenarios demonstrate GeoManip's state-of-the-art performance, with superior out-of-distribution generalization while avoiding costly model training.

  • 7 authors
·
Jan 16, 2025

Adaptive Field Effect Planner for Safe Interactive Autonomous Driving on Curved Roads

Autonomous driving has garnered significant attention for its potential to improve safety, traffic efficiency, and user convenience. However, the dynamic and complex nature of interactive driving poses significant challenges, including the need to navigate non-linear road geometries, handle dynamic obstacles, and meet stringent safety and comfort requirements. Traditional approaches, such as artificial potential fields (APF), often fall short in addressing these complexities independently, necessitating the development of integrated and adaptive frameworks. This paper presents a novel approach to autonomous vehicle navigation that integrates artificial potential fields, Frenet coordinates, and improved particle swarm optimization (IPSO). A dynamic risk field, adapted from traditional APF, is proposed to ensure interactive safety by quantifying risks and dynamically adjusting lane-changing intentions based on surrounding vehicle behavior. Frenet coordinates are utilized to simplify trajectory planning on non-straight roads, while an enhanced quintic polynomial trajectory generator ensures smooth and comfortable path transitions. Additionally, an IPSO algorithm optimizes trajectory selection in real time, balancing safety and user comfort within a feasible input range. The proposed framework is validated through extensive simulations and real-world scenarios, demonstrating its ability to navigate complex traffic environments, maintain safety margins, and generate smooth, dynamically feasible trajectories.

  • 5 authors
·
Apr 20, 2025

An Architecture for Meeting Quality-of-Service Requirements in Multi-User Quantum Networks

Quantum communication can enhance internet technology by enabling novel applications that are provably impossible classically. The successful execution of such applications relies on the generation of quantum entanglement between different users of the network which meets stringent performance requirements. Alongside traditional metrics such as throughput and jitter, one must ensure the generated entanglement is of sufficiently high quality. Meeting such performance requirements demands a careful orchestration of many devices in the network, giving rise to a fundamentally new scheduling problem. Furthermore, technological limitations of near-term quantum devices impose significant constraints on scheduling methods hoping to meet performance requirements. In this work, we propose the first end-to-end design of a centralized quantum network with multiple users that orchestrates the delivery of entanglement which meets quality-of-service (QoS) requirements of applications. We achieve this by using a centrally constructed schedule that manages usage of devices and ensures the coordinated execution of different quantum operations throughout the network. We use periodic task scheduling and resource-constrained project scheduling techniques, including a novel heuristic, to construct the schedules. Our simulations of four small networks using hardware-validated network parameters, and of a real-world fiber topology using futuristic parameters, illustrate trade-offs between traditional and quantum performance metrics.

  • 2 authors
·
Nov 25, 2021

Generative Physical AI in Vision: A Survey

Generative Artificial Intelligence (AI) has rapidly advanced the field of computer vision by enabling machines to create and interpret visual data with unprecedented sophistication. This transformation builds upon a foundation of generative models to produce realistic images, videos, and 3D/4D content. Conventional generative models primarily focus on visual fidelity while often neglecting the physical plausibility of the generated content. This gap limits their effectiveness in applications that require adherence to real-world physical laws, such as robotics, autonomous systems, and scientific simulations. As generative models evolve to increasingly integrate physical realism and dynamic simulation, their potential to function as "world simulators" expands. Therefore, the field of physics-aware generation in computer vision is rapidly growing, calling for a comprehensive survey to provide a structured analysis of current efforts. To serve this purpose, the survey presents a systematic review, categorizing methods based on how they incorporate physical knowledge, either through explicit simulation or implicit learning. It also analyzes key paradigms, discusses evaluation protocols, and identifies future research directions. By offering a comprehensive overview, this survey aims to help future developments in physically grounded generation for computer vision. The reviewed papers are summarized at https://tinyurl.com/Physics-Aware-Generation.

  • 8 authors
·
Jan 18, 2025

Understanding Disparities in Post Hoc Machine Learning Explanation

Previous work has highlighted that existing post-hoc explanation methods exhibit disparities in explanation fidelity (across 'race' and 'gender' as sensitive attributes), and while a large body of work focuses on mitigating these issues at the explanation metric level, the role of the data generating process and black box model in relation to explanation disparities remains largely unexplored. Accordingly, through both simulations as well as experiments on a real-world dataset, we specifically assess challenges to explanation disparities that originate from properties of the data: limited sample size, covariate shift, concept shift, omitted variable bias, and challenges based on model properties: inclusion of the sensitive attribute and appropriate functional form. Through controlled simulation analyses, our study demonstrates that increased covariate shift, concept shift, and omission of covariates increase explanation disparities, with the effect pronounced higher for neural network models that are better able to capture the underlying functional form in comparison to linear models. We also observe consistent findings regarding the effect of concept shift and omitted variable bias on explanation disparities in the Adult income dataset. Overall, results indicate that disparities in model explanations can also depend on data and model properties. Based on this systematic investigation, we provide recommendations for the design of explanation methods that mitigate undesirable disparities.

  • 4 authors
·
Jan 25, 2024

InternScenes: A Large-scale Simulatable Indoor Scene Dataset with Realistic Layouts

The advancement of Embodied AI heavily relies on large-scale, simulatable 3D scene datasets characterized by scene diversity and realistic layouts. However, existing datasets typically suffer from limitations in data scale or diversity, sanitized layouts lacking small items, and severe object collisions. To address these shortcomings, we introduce InternScenes, a novel large-scale simulatable indoor scene dataset comprising approximately 40,000 diverse scenes by integrating three disparate scene sources, real-world scans, procedurally generated scenes, and designer-created scenes, including 1.96M 3D objects and covering 15 common scene types and 288 object classes. We particularly preserve massive small items in the scenes, resulting in realistic and complex layouts with an average of 41.5 objects per region. Our comprehensive data processing pipeline ensures simulatability by creating real-to-sim replicas for real-world scans, enhances interactivity by incorporating interactive objects into these scenes, and resolves object collisions by physical simulations. We demonstrate the value of InternScenes with two benchmark applications: scene layout generation and point-goal navigation. Both show the new challenges posed by the complex and realistic layouts. More importantly, InternScenes paves the way for scaling up the model training for both tasks, making the generation and navigation in such complex scenes possible. We commit to open-sourcing the data, models, and benchmarks to benefit the whole community.

  • 12 authors
·
Sep 13, 2025 2

D5RL: Diverse Datasets for Data-Driven Deep Reinforcement Learning

Offline reinforcement learning algorithms hold the promise of enabling data-driven RL methods that do not require costly or dangerous real-world exploration and benefit from large pre-collected datasets. This in turn can facilitate real-world applications, as well as a more standardized approach to RL research. Furthermore, offline RL methods can provide effective initializations for online finetuning to overcome challenges with exploration. However, evaluating progress on offline RL algorithms requires effective and challenging benchmarks that capture properties of real-world tasks, provide a range of task difficulties, and cover a range of challenges both in terms of the parameters of the domain (e.g., length of the horizon, sparsity of rewards) and the parameters of the data (e.g., narrow demonstration data or broad exploratory data). While considerable progress in offline RL in recent years has been enabled by simpler benchmark tasks, the most widely used datasets are increasingly saturating in performance and may fail to reflect properties of realistic tasks. We propose a new benchmark for offline RL that focuses on realistic simulations of robotic manipulation and locomotion environments, based on models of real-world robotic systems, and comprising a variety of data sources, including scripted data, play-style data collected by human teleoperators, and other data sources. Our proposed benchmark covers state-based and image-based domains, and supports both offline RL and online fine-tuning evaluation, with some of the tasks specifically designed to require both pre-training and fine-tuning. We hope that our proposed benchmark will facilitate further progress on both offline RL and fine-tuning algorithms. Website with code, examples, tasks, and data is available at https://sites.google.com/view/d5rl/

  • 12 authors
·
Aug 15, 2024 2

From Individual to Society: A Survey on Social Simulation Driven by Large Language Model-based Agents

Traditional sociological research often relies on human participation, which, though effective, is expensive, challenging to scale, and with ethical concerns. Recent advancements in large language models (LLMs) highlight their potential to simulate human behavior, enabling the replication of individual responses and facilitating studies on many interdisciplinary studies. In this paper, we conduct a comprehensive survey of this field, illustrating the recent progress in simulation driven by LLM-empowered agents. We categorize the simulations into three types: (1) Individual Simulation, which mimics specific individuals or demographic groups; (2) Scenario Simulation, where multiple agents collaborate to achieve goals within specific contexts; and (3) Society Simulation, which models interactions within agent societies to reflect the complexity and variety of real-world dynamics. These simulations follow a progression, ranging from detailed individual modeling to large-scale societal phenomena. We provide a detailed discussion of each simulation type, including the architecture or key components of the simulation, the classification of objectives or scenarios and the evaluation method. Afterward, we summarize commonly used datasets and benchmarks. Finally, we discuss the trends across these three types of simulation. A repository for the related sources is at {https://github.com/FudanDISC/SocialAgent}.

  • 11 authors
·
Dec 4, 2024

Solving the optimal stopping problem with reinforcement learning: an application in financial option exercise

The optimal stopping problem is a category of decision problems with a specific constrained configuration. It is relevant to various real-world applications such as finance and management. To solve the optimal stopping problem, state-of-the-art algorithms in dynamic programming, such as the least-squares Monte Carlo (LSMC), are employed. This type of algorithm relies on path simulations using only the last price of the underlying asset as a state representation. Also, the LSMC was thinking for option valuation where risk-neutral probabilities can be employed to account for uncertainty. However, the general optimal stopping problem goals may not fit the requirements of the LSMC showing auto-correlated prices. We employ a data-driven method that uses Monte Carlo simulation to train and test artificial neural networks (ANN) to solve the optimal stopping problem. Using ANN to solve decision problems is not entirely new. We propose a different architecture that uses convolutional neural networks (CNN) to deal with the dimensionality problem that arises when we transform the whole history of prices into a Markovian state. We present experiments that indicate that our proposed architecture improves results over the previous implementations under specific simulated time series function sets. Lastly, we employ our proposed method to compare the optimal exercise of the financial options problem with the LSMC algorithm. Our experiments show that our method can capture more accurate exercise opportunities when compared to the LSMC. We have outstandingly higher (above 974\% improvement) expected payoff from these exercise policies under the many Monte Carlo simulations that used the real-world return database on the out-of-sample (test) data.

  • 3 authors
·
Jul 21, 2022

Maximizing Alignment with Minimal Feedback: Efficiently Learning Rewards for Visuomotor Robot Policy Alignment

Visuomotor robot policies, increasingly pre-trained on large-scale datasets, promise significant advancements across robotics domains. However, aligning these policies with end-user preferences remains a challenge, particularly when the preferences are hard to specify. While reinforcement learning from human feedback (RLHF) has become the predominant mechanism for alignment in non-embodied domains like large language models, it has not seen the same success in aligning visuomotor policies due to the prohibitive amount of human feedback required to learn visual reward functions. To address this limitation, we propose Representation-Aligned Preference-based Learning (RAPL), an observation-only method for learning visual rewards from significantly less human preference feedback. Unlike traditional RLHF, RAPL focuses human feedback on fine-tuning pre-trained vision encoders to align with the end-user's visual representation and then constructs a dense visual reward via feature matching in this aligned representation space. We first validate RAPL through simulation experiments in the X-Magical benchmark and Franka Panda robotic manipulation, demonstrating that it can learn rewards aligned with human preferences, more efficiently uses preference data, and generalizes across robot embodiments. Finally, our hardware experiments align pre-trained Diffusion Policies for three object manipulation tasks. We find that RAPL can fine-tune these policies with 5x less real human preference data, taking the first step towards minimizing human feedback while maximizing visuomotor robot policy alignment.

  • 6 authors
·
Dec 6, 2024 2

Enhancing LLM-Based Social Bot via an Adversarial Learning Framework

Developing Large Language Model (LLM) agents that exhibit human-like behavior, encompassing not only individual heterogeneity rooted in unique user profiles but also adaptive response to socially connected neighbors, is a significant research challenge. Social media platforms, with their diverse user data and explicit social structures, provide an ideal testbed for such investigations. This paper introduces EvoBot, an Evolving LLM-based social Bot that significantly enhances human-like generative capabilities through a novel adversarial learning framework. EvoBot is initialized by Supervised Fine-Tuning (SFT) on representative data from social media and then iteratively refines its generation of sophisticated, human-like content via Direct Preference Optimization (DPO). This refinement is guided by feedback from a co-adapting Detector which concurrently improves its ability to distinguish EvoBot from humans, thereby creating an increasingly challenging learning environment for EvoBot. Experiments demonstrate that EvoBot generates content aligned with diverse user profiles, increasingly bypassing the co-adapting Detector through human-like expression. Moreover, it exhibits strong social responsiveness, more accurately modeling real-world opinion dynamics and information spread in multi-agent simulations. The framework also yields a more robust Detector, underscoring its broader utility for both advanced agent development and related detection tasks. The code is available at https://github.com/kfq20/EvoBot.

  • 6 authors
·
Aug 25, 2025

Mixture of Horizons in Action Chunking

Vision-language-action (VLA) models have shown remarkable capabilities in robotic manipulation, but their performance is sensitive to the action chunk length used during training, termed horizon. Our empirical study reveals an inherent trade-off: longer horizons provide stronger global foresight but degrade fine-grained accuracy, while shorter ones sharpen local control yet struggle on long-term tasks, implying fixed choice of single horizons being suboptimal. To mitigate the trade-off, we propose a mixture of horizons (MoH) strategy. MoH rearranges the action chunk into several segments with different horizons, processes them in parallel with a shared action transformer, and fuses outputs with a light linear gate. It has three appealing benefits. 1) MoH exploits long-term foresight and short-term precision jointly within a single model, improving both performance and generalizability to complex tasks. 2) MoH is plug-and-play for full-attention action modules with minimal training or inference overhead. 3) MoH enables dynamic inference with adaptive horizons, which selects stable actions through cross-horizon consensus, achieving 2.5times higher throughput than baselines while preserving superior performance. Extensive experiments over flow-based policies π_0, π_{0.5}, and one-step regression policy π_{reg} demonstrate that MoH yields consistent and significant gains on both simulations and real-world tasks. Notably, under mixed-task setting, π_{0.5} with MoH reaches a new state-of-the-art with 99% average success rate on LIBERO after only 30k training iterations. Project page: https://github.com/Timsty1/MixtureOfHorizons

  • 10 authors
·
Nov 24, 2025 2

Learning H-Infinity Locomotion Control

Stable locomotion in precipitous environments is an essential capability of quadruped robots, demanding the ability to resist various external disturbances. However, recent learning-based policies only use basic domain randomization to improve the robustness of learned policies, which cannot guarantee that the robot has adequate disturbance resistance capabilities. In this paper, we propose to model the learning process as an adversarial interaction between the actor and a newly introduced disturber and ensure their optimization with H_{infty} constraint. In contrast to the actor that maximizes the discounted overall reward, the disturber is responsible for generating effective external forces and is optimized by maximizing the error between the task reward and its oracle, i.e., "cost" in each iteration. To keep joint optimization between the actor and the disturber stable, our H_{infty} constraint mandates the bound of ratio between the cost to the intensity of the external forces. Through reciprocal interaction throughout the training phase, the actor can acquire the capability to navigate increasingly complex physical disturbances. We verify the robustness of our approach on quadrupedal locomotion tasks with Unitree Aliengo robot, and also a more challenging task with Unitree A1 robot, where the quadruped is expected to perform locomotion merely on its hind legs as if it is a bipedal robot. The simulated quantitative results show improvement against baselines, demonstrating the effectiveness of the method and each design choice. On the other hand, real-robot experiments qualitatively exhibit how robust the policy is when interfering with various disturbances on various terrains, including stairs, high platforms, slopes, and slippery terrains. All code, checkpoints, and real-world deployment guidance will be made public.

  • 6 authors
·
Apr 22, 2024 1

Robot Control Stack: A Lean Ecosystem for Robot Learning at Scale

Vision-Language-Action models (VLAs) mark a major shift in robot learning. They replace specialized architectures and task-tailored components of expert policies with large-scale data collection and setup-specific fine-tuning. In this machine learning-focused workflow that is centered around models and scalable training, traditional robotics software frameworks become a bottleneck, while robot simulations offer only limited support for transitioning from and to real-world experiments. In this work, we close this gap by introducing Robot Control Stack (RCS), a lean ecosystem designed from the ground up to support research in robot learning with large-scale generalist policies. At its core, RCS features a modular and easily extensible layered architecture with a unified interface for simulated and physical robots, facilitating sim-to-real transfer. Despite its minimal footprint and dependencies, it offers a complete feature set, enabling both real-world experiments and large-scale training in simulation. Our contribution is twofold: First, we introduce the architecture of RCS and explain its design principles. Second, we evaluate its usability and performance along the development cycle of VLA and RL policies. Our experiments also provide an extensive evaluation of Octo, OpenVLA, and Pi Zero on multiple robots and shed light on how simulation data can improve real-world policy performance. Our code, datasets, weights, and videos are available at: https://robotcontrolstack.github.io/

  • 10 authors
·
Sep 18, 2025

Efficient Telecom Specific LLM: TSLAM-Mini with QLoRA and Digital Twin Data

General-purpose large language models (LLMs), despite their broad capabilities accrued from open-world data, frequently exhibit suboptimal performance when confronted with the nuanced and specialized demands inherent in real-time telecommunications applications. This investigation addresses this critical limitation through the meticulous fine-tuning of TSLAM-Mini developed by NetoAI, a compact (3.8-billion parameter) causal language model architecturally derived from Phi-4 Mini Instruct 4B. The fine-tuning regimen leverages a bespoke dataset comprising 100,000 samples, strategically engineered to address 20 pivotal telecommunications use-cases, encompassing domains such as Network Fundamentals, IP Routing, MPLS, Network Security, Automation, OSS/BSS, RAN, Mobile Core, Satellite Communications, and Ethical AI. This dataset was curated utilizing NetoAI's DigiTwin platform, enriched with granular insights from venerated network Subject Matter Experts (SMEs) and authoritative RFC documents, thereby capturing high-fidelity representations of real-world network dynamics through simulations inspired by digital twin paradigms. Employing Quantized Low-Rank Adaptation (QLoRA), a state-of-the-art Parameter Efficient Fine-Tuning (PEFT) technique, we achieved substantial training efficiency and enabled prospective deployment on resource-constrained hardware. A novel evaluation framework, predicated on a high-capacity LLM (Qwen3-235B-A22B) functioning as an automated adjudicator, was instituted to rigorously assess instruction-following fidelity and response quality across the specified telecom use-cases. Empirical results unequivocally demonstrate TSLAM-Mini's superior aptitude in telecom-centric applications, underscoring the profound efficacy of domain-specific datasets and PEFT methodologies for advancing intelligent network management.

  • 4 authors
·
May 10, 2025

SimScale: Learning to Drive via Real-World Simulation at Scale

Achieving fully autonomous driving systems requires learning rational decisions in a wide span of scenarios, including safety-critical and out-of-distribution ones. However, such cases are underrepresented in real-world corpus collected by human experts. To complement for the lack of data diversity, we introduce a novel and scalable simulation framework capable of synthesizing massive unseen states upon existing driving logs. Our pipeline utilizes advanced neural rendering with a reactive environment to generate high-fidelity multi-view observations controlled by the perturbed ego trajectory. Furthermore, we develop a pseudo-expert trajectory generation mechanism for these newly simulated states to provide action supervision. Upon the synthesized data, we find that a simple co-training strategy on both real-world and simulated samples can lead to significant improvements in both robustness and generalization for various planning methods on challenging real-world benchmarks, up to +6.8 EPDMS on navhard and +2.9 on navtest. More importantly, such policy improvement scales smoothly by increasing simulation data only, even without extra real-world data streaming in. We further reveal several crucial findings of such a sim-real learning system, which we term SimScale, including the design of pseudo-experts and the scaling properties for different policy architectures. Our simulation data and code would be released.

OpenDriveLab OpenDriveLab
·
Nov 28, 2025 2

Reframing Spatial Reasoning Evaluation in Language Models: A Real-World Simulation Benchmark for Qualitative Reasoning

Spatial reasoning plays a vital role in both human cognition and machine intelligence, prompting new research into language models' (LMs) capabilities in this regard. However, existing benchmarks reveal shortcomings in evaluating qualitative spatial reasoning (QSR). These benchmarks typically present oversimplified scenarios or unclear natural language descriptions, hindering effective evaluation. We present a novel benchmark for assessing QSR in LMs, which is grounded in realistic 3D simulation data, offering a series of diverse room layouts with various objects and their spatial relationships. This approach provides a more detailed and context-rich narrative for spatial reasoning evaluation, diverging from traditional, toy-task-oriented scenarios. Our benchmark encompasses a broad spectrum of qualitative spatial relationships, including topological, directional, and distance relations. These are presented with different viewing points, varied granularities, and density of relation constraints to mimic real-world complexities. A key contribution is our logic-based consistency-checking tool, which enables the assessment of multiple plausible solutions, aligning with real-world scenarios where spatial relationships are often open to interpretation. Our benchmark evaluation of advanced LMs reveals their strengths and limitations in spatial reasoning. They face difficulties with multi-hop spatial reasoning and interpreting a mix of different view descriptions, pointing to areas for future improvement.

  • 3 authors
·
May 23, 2024

ReSim: Reliable World Simulation for Autonomous Driving

How can we reliably simulate future driving scenarios under a wide range of ego driving behaviors? Recent driving world models, developed exclusively on real-world driving data composed mainly of safe expert trajectories, struggle to follow hazardous or non-expert behaviors, which are rare in such data. This limitation restricts their applicability to tasks such as policy evaluation. In this work, we address this challenge by enriching real-world human demonstrations with diverse non-expert data collected from a driving simulator (e.g., CARLA), and building a controllable world model trained on this heterogeneous corpus. Starting with a video generator featuring a diffusion transformer architecture, we devise several strategies to effectively integrate conditioning signals and improve prediction controllability and fidelity. The resulting model, ReSim, enables Reliable Simulation of diverse open-world driving scenarios under various actions, including hazardous non-expert ones. To close the gap between high-fidelity simulation and applications that require reward signals to judge different actions, we introduce a Video2Reward module that estimates a reward from ReSim's simulated future. Our ReSim paradigm achieves up to 44% higher visual fidelity, improves controllability for both expert and non-expert actions by over 50%, and boosts planning and policy selection performance on NAVSIM by 2% and 25%, respectively.

  • 10 authors
·
Jun 11, 2025

World4RL: Diffusion World Models for Policy Refinement with Reinforcement Learning for Robotic Manipulation

Robotic manipulation policies are commonly initialized through imitation learning, but their performance is limited by the scarcity and narrow coverage of expert data. Reinforcement learning can refine polices to alleviate this limitation, yet real-robot training is costly and unsafe, while training in simulators suffers from the sim-to-real gap. Recent advances in generative models have demonstrated remarkable capabilities in real-world simulation, with diffusion models in particular excelling at generation. This raises the question of how diffusion model-based world models can be combined to enhance pre-trained policies in robotic manipulation. In this work, we propose World4RL, a framework that employs diffusion-based world models as high-fidelity simulators to refine pre-trained policies entirely in imagined environments for robotic manipulation. Unlike prior works that primarily employ world models for planning, our framework enables direct end-to-end policy optimization. World4RL is designed around two principles: pre-training a diffusion world model that captures diverse dynamics on multi-task datasets and refining policies entirely within a frozen world model to avoid online real-world interactions. We further design a two-hot action encoding scheme tailored for robotic manipulation and adopt diffusion backbones to improve modeling fidelity. Extensive simulation and real-world experiments demonstrate that World4RL provides high-fidelity environment modeling and enables consistent policy refinement, yielding significantly higher success rates compared to imitation learning and other baselines. More visualization results are available at https://world4rl.github.io/.

  • 9 authors
·
Sep 23, 2025

FutureSightDrive: Thinking Visually with Spatio-Temporal CoT for Autonomous Driving

Visual language models (VLMs) have attracted increasing interest in autonomous driving due to their powerful reasoning capabilities. However, existing VLMs typically utilize discrete text Chain-of-Thought (CoT) tailored to the current scenario, which essentially represents highly abstract and symbolic compression of visual information, potentially leading to spatio-temporal relationship ambiguity and fine-grained information loss. Is autonomous driving better modeled on real-world simulation and imagination than on pure symbolic logic? In this paper, we propose a spatio-temporal CoT reasoning method that enables models to think visually. First, VLM serves as a world model to generate unified image frame for predicting future world states: where perception results (e.g., lane divider and 3D detection) represent the future spatial relationships, and ordinary future frame represent the temporal evolution relationships. This spatio-temporal CoT then serves as intermediate reasoning steps, enabling the VLM to function as an inverse dynamics model for trajectory planning based on current observations and future predictions. To implement visual generation in VLMs, we propose a unified pretraining paradigm integrating visual generation and understanding, along with a progressive visual CoT enhancing autoregressive image generation. Extensive experimental results demonstrate the effectiveness of the proposed method, advancing autonomous driving towards visual reasoning.

  • 8 authors
·
May 23, 2025

EgoVid-5M: A Large-Scale Video-Action Dataset for Egocentric Video Generation

Video generation has emerged as a promising tool for world simulation, leveraging visual data to replicate real-world environments. Within this context, egocentric video generation, which centers on the human perspective, holds significant potential for enhancing applications in virtual reality, augmented reality, and gaming. However, the generation of egocentric videos presents substantial challenges due to the dynamic nature of egocentric viewpoints, the intricate diversity of actions, and the complex variety of scenes encountered. Existing datasets are inadequate for addressing these challenges effectively. To bridge this gap, we present EgoVid-5M, the first high-quality dataset specifically curated for egocentric video generation. EgoVid-5M encompasses 5 million egocentric video clips and is enriched with detailed action annotations, including fine-grained kinematic control and high-level textual descriptions. To ensure the integrity and usability of the dataset, we implement a sophisticated data cleaning pipeline designed to maintain frame consistency, action coherence, and motion smoothness under egocentric conditions. Furthermore, we introduce EgoDreamer, which is capable of generating egocentric videos driven simultaneously by action descriptions and kinematic control signals. The EgoVid-5M dataset, associated action annotations, and all data cleansing metadata will be released for the advancement of research in egocentric video generation.

  • 9 authors
·
Nov 13, 2024 3

DreamVLA: A Vision-Language-Action Model Dreamed with Comprehensive World Knowledge

Recent advances in vision-language-action (VLA) models have shown promise in integrating image generation with action prediction to improve generalization and reasoning in robot manipulation. However, existing methods are limited to challenging image-based forecasting, which suffers from redundant information and lacks comprehensive and critical world knowledge, including dynamic, spatial and semantic information. To address these limitations, we propose DreamVLA, a novel VLA framework that integrates comprehensive world knowledge forecasting to enable inverse dynamics modeling, thereby establishing a perception-prediction-action loop for manipulation tasks. Specifically, DreamVLA introduces a dynamic-region-guided world knowledge prediction, integrated with the spatial and semantic cues, which provide compact yet comprehensive representations for action planning. This design aligns with how humans interact with the world by first forming abstract multimodal reasoning chains before acting. To mitigate interference among the dynamic, spatial and semantic information during training, we adopt a block-wise structured attention mechanism that masks their mutual attention, preventing information leakage and keeping each representation clean and disentangled. Moreover, to model the conditional distribution over future actions, we employ a diffusion-based transformer that disentangles action representations from shared latent features. Extensive experiments on both real-world and simulation environments demonstrate that DreamVLA achieves 76.7% success rate on real robot tasks and 4.44 average length on the CALVIN ABC-D benchmarks.

  • 13 authors
·
Jul 6, 2025 2

SimWorld: A Unified Benchmark for Simulator-Conditioned Scene Generation via World Model

With the rapid advancement of autonomous driving technology, a lack of data has become a major obstacle to enhancing perception model accuracy. Researchers are now exploring controllable data generation using world models to diversify datasets. However, previous work has been limited to studying image generation quality on specific public datasets. There is still relatively little research on how to build data generation engines for real-world application scenes to achieve large-scale data generation for challenging scenes. In this paper, a simulator-conditioned scene generation engine based on world model is proposed. By constructing a simulation system consistent with real-world scenes, simulation data and labels, which serve as the conditions for data generation in the world model, for any scenes can be collected. It is a novel data generation pipeline by combining the powerful scene simulation capabilities of the simulation engine with the robust data generation capabilities of the world model. In addition, a benchmark with proportionally constructed virtual and real data, is provided for exploring the capabilities of world models in real-world scenes. Quantitative results show that these generated images significantly improve downstream perception models performance. Finally, we explored the generative performance of the world model in urban autonomous driving scenarios. All the data and code will be available at https://github.com/Li-Zn-H/SimWorld.

  • 6 authors
·
Mar 18, 2025

ACoT-VLA: Action Chain-of-Thought for Vision-Language-Action Models

Vision-Language-Action (VLA) models have emerged as essential generalist robot policies for diverse manipulation tasks, conventionally relying on directly translating multimodal inputs into actions via Vision-Language Model (VLM) embeddings. Recent advancements have introduced explicit intermediary reasoning, such as sub-task prediction (language) or goal image synthesis (vision), to guide action generation. However, these intermediate reasoning are often indirect and inherently limited in their capacity to convey the full, granular information required for precise action execution. Instead, we posit that the most effective form of reasoning is one that deliberates directly in the action space. We introduce Action Chain-of-Thought (ACoT), a paradigm where the reasoning process itself is formulated as a structured sequence of coarse action intents that guide the final policy. In this paper, we propose ACoT-VLA, a novel architecture that materializes the ACoT paradigm. Specifically, we introduce two complementary components: an Explicit Action Reasoner (EAR) and Implicit Action Reasoner (IAR). The former proposes coarse reference trajectories as explicit action-level reasoning steps, while the latter extracts latent action priors from internal representations of multimodal input, co-forming an ACoT that conditions the downstream action head to enable grounded policy learning. Extensive experiments in real-world and simulation environments demonstrate the superiority of our proposed method, which achieves 98.5%, 84.1%, and 47.4% on LIBERO, LIBERO-Plus and VLABench, respectively.

agibot-world AgiBot World
·
Jan 16 3

Align your Latents: High-Resolution Video Synthesis with Latent Diffusion Models

Latent Diffusion Models (LDMs) enable high-quality image synthesis while avoiding excessive compute demands by training a diffusion model in a compressed lower-dimensional latent space. Here, we apply the LDM paradigm to high-resolution video generation, a particularly resource-intensive task. We first pre-train an LDM on images only; then, we turn the image generator into a video generator by introducing a temporal dimension to the latent space diffusion model and fine-tuning on encoded image sequences, i.e., videos. Similarly, we temporally align diffusion model upsamplers, turning them into temporally consistent video super resolution models. We focus on two relevant real-world applications: Simulation of in-the-wild driving data and creative content creation with text-to-video modeling. In particular, we validate our Video LDM on real driving videos of resolution 512 x 1024, achieving state-of-the-art performance. Furthermore, our approach can easily leverage off-the-shelf pre-trained image LDMs, as we only need to train a temporal alignment model in that case. Doing so, we turn the publicly available, state-of-the-art text-to-image LDM Stable Diffusion into an efficient and expressive text-to-video model with resolution up to 1280 x 2048. We show that the temporal layers trained in this way generalize to different fine-tuned text-to-image LDMs. Utilizing this property, we show the first results for personalized text-to-video generation, opening exciting directions for future content creation. Project page: https://research.nvidia.com/labs/toronto-ai/VideoLDM/

  • 7 authors
·
Apr 18, 2023

M2T2: Multi-Task Masked Transformer for Object-centric Pick and Place

With the advent of large language models and large-scale robotic datasets, there has been tremendous progress in high-level decision-making for object manipulation. These generic models are able to interpret complex tasks using language commands, but they often have difficulties generalizing to out-of-distribution objects due to the inability of low-level action primitives. In contrast, existing task-specific models excel in low-level manipulation of unknown objects, but only work for a single type of action. To bridge this gap, we present M2T2, a single model that supplies different types of low-level actions that work robustly on arbitrary objects in cluttered scenes. M2T2 is a transformer model which reasons about contact points and predicts valid gripper poses for different action modes given a raw point cloud of the scene. Trained on a large-scale synthetic dataset with 128K scenes, M2T2 achieves zero-shot sim2real transfer on the real robot, outperforming the baseline system with state-of-the-art task-specific models by about 19% in overall performance and 37.5% in challenging scenes where the object needs to be re-oriented for collision-free placement. M2T2 also achieves state-of-the-art results on a subset of language conditioned tasks in RLBench. Videos of robot experiments on unseen objects in both real world and simulation are available on our project website https://m2-t2.github.io.

  • 4 authors
·
Nov 1, 2023

Universal Actions for Enhanced Embodied Foundation Models

Training on diverse, internet-scale data is a key factor in the success of recent large foundation models. Yet, using the same recipe for building embodied agents has faced noticeable difficulties. Despite the availability of many crowd-sourced embodied datasets, their action spaces often exhibit significant heterogeneity due to distinct physical embodiment and control interfaces for different robots, causing substantial challenges in developing embodied foundation models using cross-domain data. In this paper, we introduce UniAct, a new embodied foundation modeling framework operating in a tokenized Universal Action Space. Our learned universal actions capture the generic atomic behaviors across diverse robots by exploiting their shared structural features, and enable enhanced cross-domain data utilization and cross-embodiment generalizations by eliminating the notorious heterogeneity. The universal actions can be efficiently translated back to heterogeneous actionable commands by simply adding embodiment-specific details, from which fast adaptation to new robots becomes simple and straightforward. Our 0.5B instantiation of UniAct outperforms 14X larger SOTA embodied foundation models in extensive evaluations on various real-world and simulation robots, showcasing exceptional cross-embodiment control and adaptation capability, highlighting the crucial benefit of adopting universal actions. Project page: https://github.com/2toinf/UniAct

  • 10 authors
·
Jan 17, 2025

Towards Universal Mesh Movement Networks

Solving complex Partial Differential Equations (PDEs) accurately and efficiently is an essential and challenging problem in all scientific and engineering disciplines. Mesh movement methods provide the capability to improve the accuracy of the numerical solution without increasing the overall mesh degree of freedom count. Conventional sophisticated mesh movement methods are extremely expensive and struggle to handle scenarios with complex boundary geometries. However, existing learning-based methods require re-training from scratch given a different PDE type or boundary geometry, which limits their applicability, and also often suffer from robustness issues in the form of inverted elements. In this paper, we introduce the Universal Mesh Movement Network (UM2N), which -- once trained -- can be applied in a non-intrusive, zero-shot manner to move meshes with different size distributions and structures, for solvers applicable to different PDE types and boundary geometries. UM2N consists of a Graph Transformer (GT) encoder for extracting features and a Graph Attention Network (GAT) based decoder for moving the mesh. We evaluate our method on advection and Navier-Stokes based examples, as well as a real-world tsunami simulation case. Our method outperforms existing learning-based mesh movement methods in terms of the benchmarks described above. In comparison to the conventional sophisticated Monge-Amp\`ere PDE-solver based method, our approach not only significantly accelerates mesh movement, but also proves effective in scenarios where the conventional method fails. Our project page is at https://erizmr.github.io/UM2N/.

  • 8 authors
·
Jun 29, 2024

MLM: Learning Multi-task Loco-Manipulation Whole-Body Control for Quadruped Robot with Arm

Whole-body loco-manipulation for quadruped robots with arms remains a challenging problem, particularly in achieving multi-task control. To address this, we propose MLM, a reinforcement learning framework driven by both real-world and simulation data. It enables a six-DoF robotic arm-equipped quadruped robot to perform whole-body loco-manipulation for multiple tasks autonomously or under human teleoperation. To address the problem of balancing multiple tasks during the learning of loco-manipulation, we introduce a trajectory library with an adaptive, curriculum-based sampling mechanism. This approach allows the policy to efficiently leverage real-world collected trajectories for learning multi-task loco-manipulation. To address deployment scenarios with only historical observations and to enhance the performance of policy execution across tasks with different spatial ranges, we propose a Trajectory-Velocity Prediction policy network. It predicts unobservable future trajectories and velocities. By leveraging extensive simulation data and curriculum-based rewards, our controller achieves whole-body behaviors in simulation and zero-shot transfer to real-world deployment. Ablation studies in simulation verify the necessity and effectiveness of our approach, while real-world experiments on a Go2 robot with an Airbot robotic arm demonstrate the policy's good performance in multi-task execution.

  • 17 authors
·
Aug 14, 2025

Manipulate-Anything: Automating Real-World Robots using Vision-Language Models

Large-scale endeavors like and widespread community efforts such as Open-X-Embodiment have contributed to growing the scale of robot demonstration data. However, there is still an opportunity to improve the quality, quantity, and diversity of robot demonstration data. Although vision-language models have been shown to automatically generate demonstration data, their utility has been limited to environments with privileged state information, they require hand-designed skills, and are limited to interactions with few object instances. We propose Manipulate-Anything, a scalable automated generation method for real-world robotic manipulation. Unlike prior work, our method can operate in real-world environments without any privileged state information, hand-designed skills, and can manipulate any static object. We evaluate our method using two setups. First, Manipulate-Anything successfully generates trajectories for all 7 real-world and 14 simulation tasks, significantly outperforming existing methods like VoxPoser. Second, Manipulate-Anything's demonstrations can train more robust behavior cloning policies than training with human demonstrations, or from data generated by VoxPoser, Scaling-up, and Code-As-Policies. We believe Manipulate-Anything can be a scalable method for both generating data for robotics and solving novel tasks in a zero-shot setting. Project page: https://robot-ma.github.io/.

  • 7 authors
·
Jun 27, 2024

SERN: Simulation-Enhanced Realistic Navigation for Multi-Agent Robotic Systems in Contested Environments

The increasing deployment of autonomous systems in complex environments necessitates efficient communication and task completion among multiple agents. This paper presents SERN (Simulation-Enhanced Realistic Navigation), a novel framework integrating virtual and physical environments for real-time collaborative decision-making in multi-robot systems. SERN addresses key challenges in asset deployment and coordination through our bi-directional SERN ROS Bridge communication framework. Our approach advances the SOTA through: accurate real-world representation in virtual environments using Unity high-fidelity simulator; synchronization of physical and virtual robot movements; efficient ROS data distribution between remote locations; and integration of SOTA semantic segmentation for enhanced environmental perception. Additionally, we introduce a Multi-Metric Cost Function (MMCF) that dynamically balances latency, reliability, computational overhead, and bandwidth consumption to optimize system performance in contested environments. We further provide theoretical justification for synchronization accuracy by proving that the positional error between physical and virtual robots remains bounded under varying network conditions. Our evaluations show a 15% to 24% improvement in latency and up to a 15% increase in processing efficiency compared to traditional ROS setups. Real-world and virtual simulation experiments with multiple robots (Clearpath Jackal and Husky) demonstrate synchronization accuracy, achieving less than 5 cm positional error and under 2^circ rotational error. These results highlight SERN's potential to enhance situational awareness and multi-agent coordination in diverse, contested environments.

  • 19 authors
·
Oct 22, 2024

Imaginative World Modeling with Scene Graphs for Embodied Agent Navigation

Semantic navigation requires an agent to navigate toward a specified target in an unseen environment. Employing an imaginative navigation strategy that predicts future scenes before taking action, can empower the agent to find target faster. Inspired by this idea, we propose SGImagineNav, a novel imaginative navigation framework that leverages symbolic world modeling to proactively build a global environmental representation. SGImagineNav maintains an evolving hierarchical scene graphs and uses large language models to predict and explore unseen parts of the environment. While existing methods solely relying on past observations, this imaginative scene graph provides richer semantic context, enabling the agent to proactively estimate target locations. Building upon this, SGImagineNav adopts an adaptive navigation strategy that exploits semantic shortcuts when promising and explores unknown areas otherwise to gather additional context. This strategy continuously expands the known environment and accumulates valuable semantic contexts, ultimately guiding the agent toward the target. SGImagineNav is evaluated in both real-world scenarios and simulation benchmarks. SGImagineNav consistently outperforms previous methods, improving success rate to 65.4 and 66.8 on HM3D and HSSD, and demonstrating cross-floor and cross-room navigation in real-world environments, underscoring its effectiveness and generalizability.

  • 8 authors
·
Aug 9, 2025

F1: A Vision-Language-Action Model Bridging Understanding and Generation to Actions

Executing language-conditioned tasks in dynamic visual environments remains a central challenge in embodied AI. Existing Vision-Language-Action (VLA) models predominantly adopt reactive state-to-action mappings, often leading to short-sighted behaviors and poor robustness in dynamic scenes. In this paper, we introduce F1, a pretrained VLA framework which integrates the visual foresight generation into decision-making pipeline. F1 adopts a Mixture-of-Transformer architecture with dedicated modules for perception, foresight generation, and control, thereby bridging understanding, generation, and actions. At its core, F1 employs a next-scale prediction mechanism to synthesize goal-conditioned visual foresight as explicit planning targets. By forecasting plausible future visual states, F1 reformulates action generation as a foresight-guided inverse dynamics problem, enabling actions that implicitly achieve visual goals. To endow F1 with robust and generalizable capabilities, we propose a three-stage training recipe on an extensive dataset comprising over 330k trajectories across 136 diverse tasks. This training scheme enhances modular reasoning and equips the model with transferable visual foresight, which is critical for complex and dynamic environments. Extensive evaluations on real-world tasks and simulation benchmarks demonstrate F1 consistently outperforms existing approaches, achieving substantial gains in both task success rate and generalization ability.

  • 10 authors
·
Sep 8, 2025 2

Active Vision Might Be All You Need: Exploring Active Vision in Bimanual Robotic Manipulation

Imitation learning has demonstrated significant potential in performing high-precision manipulation tasks using visual feedback. However, it is common practice in imitation learning for cameras to be fixed in place, resulting in issues like occlusion and limited field of view. Furthermore, cameras are often placed in broad, general locations, without an effective viewpoint specific to the robot's task. In this work, we investigate the utility of active vision (AV) for imitation learning and manipulation, in which, in addition to the manipulation policy, the robot learns an AV policy from human demonstrations to dynamically change the robot's camera viewpoint to obtain better information about its environment and the given task. We introduce AV-ALOHA, a new bimanual teleoperation robot system with AV, an extension of the ALOHA 2 robot system, incorporating an additional 7-DoF robot arm that only carries a stereo camera and is solely tasked with finding the best viewpoint. This camera streams stereo video to an operator wearing a virtual reality (VR) headset, allowing the operator to control the camera pose using head and body movements. The system provides an immersive teleoperation experience, with bimanual first-person control, enabling the operator to dynamically explore and search the scene and simultaneously interact with the environment. We conduct imitation learning experiments of our system both in real-world and in simulation, across a variety of tasks that emphasize viewpoint planning. Our results demonstrate the effectiveness of human-guided AV for imitation learning, showing significant improvements over fixed cameras in tasks with limited visibility. Project website: https://soltanilara.github.io/av-aloha/

  • 5 authors
·
Sep 25, 2024

High-performance symbolic-numerics via multiple dispatch

As mathematical computing becomes more democratized in high-level languages, high-performance symbolic-numeric systems are necessary for domain scientists and engineers to get the best performance out of their machine without deep knowledge of code optimization. Naturally, users need different term types either to have different algebraic properties for them, or to use efficient data structures. To this end, we developed Symbolics.jl, an extendable symbolic system which uses dynamic multiple dispatch to change behavior depending on the domain needs. In this work we detail an underlying abstract term interface which allows for speed without sacrificing generality. We show that by formalizing a generic API on actions independent of implementation, we can retroactively add optimized data structures to our system without changing the pre-existing term rewriters. We showcase how this can be used to optimize term construction and give a 113x acceleration on general symbolic transformations. Further, we show that such a generic API allows for complementary term-rewriting implementations. We demonstrate the ability to swap between classical term-rewriting simplifiers and e-graph-based term-rewriting simplifiers. We showcase an e-graph ruleset which minimizes the number of CPU cycles during expression evaluation, and demonstrate how it simplifies a real-world reaction-network simulation to halve the runtime. Additionally, we show a reaction-diffusion partial differential equation solver which is able to be automatically converted into symbolic expressions via multiple dispatch tracing, which is subsequently accelerated and parallelized to give a 157x simulation speedup. Together, this presents Symbolics.jl as a next-generation symbolic-numeric computing environment geared towards modeling and simulation.

  • 7 authors
·
May 9, 2021

ASAP: Aligning Simulation and Real-World Physics for Learning Agile Humanoid Whole-Body Skills

Humanoid robots hold the potential for unparalleled versatility in performing human-like, whole-body skills. However, achieving agile and coordinated whole-body motions remains a significant challenge due to the dynamics mismatch between simulation and the real world. Existing approaches, such as system identification (SysID) and domain randomization (DR) methods, often rely on labor-intensive parameter tuning or result in overly conservative policies that sacrifice agility. In this paper, we present ASAP (Aligning Simulation and Real-World Physics), a two-stage framework designed to tackle the dynamics mismatch and enable agile humanoid whole-body skills. In the first stage, we pre-train motion tracking policies in simulation using retargeted human motion data. In the second stage, we deploy the policies in the real world and collect real-world data to train a delta (residual) action model that compensates for the dynamics mismatch. Then, ASAP fine-tunes pre-trained policies with the delta action model integrated into the simulator to align effectively with real-world dynamics. We evaluate ASAP across three transfer scenarios: IsaacGym to IsaacSim, IsaacGym to Genesis, and IsaacGym to the real-world Unitree G1 humanoid robot. Our approach significantly improves agility and whole-body coordination across various dynamic motions, reducing tracking error compared to SysID, DR, and delta dynamics learning baselines. ASAP enables highly agile motions that were previously difficult to achieve, demonstrating the potential of delta action learning in bridging simulation and real-world dynamics. These results suggest a promising sim-to-real direction for developing more expressive and agile humanoids.

  • 18 authors
·
Feb 3, 2025

SearchGym: Bootstrapping Real-World Search Agents via Cost-Effective and High-Fidelity Environment Simulation

Search agents have emerged as a pivotal paradigm for solving open-ended, knowledge-intensive reasoning tasks. However, training these agents via Reinforcement Learning (RL) faces a critical dilemma: interacting with live commercial Web APIs is prohibitively expensive, while relying on static data snapshots often introduces noise due to data misalignment. This misalignment generates corrupted reward signals that destabilize training by penalizing correct reasoning or rewarding hallucination. To address this, we propose SearchGym, a simulation environment designed to bootstrap robust search agents. SearchGym employs a rigorous generative pipeline to construct a verifiable knowledge graph and an aligned document corpus, ensuring that every reasoning task is factually grounded and strictly solvable. Building on this controllable environment, we introduce SearchGym-RL, a curriculum learning methodology that progressively optimizes agent policies through purified feedback, evolving from basic interactions to complex, long-horizon planning. Extensive experiments across the Llama and Qwen families demonstrate strong Sim-to-Real generalization. Notably, our Qwen2.5-7B-Base model trained within SearchGym surpasses the web-enhanced ASearcher baseline across nine diverse benchmarks by an average relative margin of 10.6%. Our results validate that high-fidelity simulation serves as a scalable and highly cost-effective methodology for developing capable search agents.

  • 9 authors
·
Jan 20

CARLANE: A Lane Detection Benchmark for Unsupervised Domain Adaptation from Simulation to multiple Real-World Domains

Unsupervised Domain Adaptation demonstrates great potential to mitigate domain shifts by transferring models from labeled source domains to unlabeled target domains. While Unsupervised Domain Adaptation has been applied to a wide variety of complex vision tasks, only few works focus on lane detection for autonomous driving. This can be attributed to the lack of publicly available datasets. To facilitate research in these directions, we propose CARLANE, a 3-way sim-to-real domain adaptation benchmark for 2D lane detection. CARLANE encompasses the single-target datasets MoLane and TuLane and the multi-target dataset MuLane. These datasets are built from three different domains, which cover diverse scenes and contain a total of 163K unique images, 118K of which are annotated. In addition we evaluate and report systematic baselines, including our own method, which builds upon Prototypical Cross-domain Self-supervised Learning. We find that false positive and false negative rates of the evaluated domain adaptation methods are high compared to those of fully supervised baselines. This affirms the need for benchmarks such as CARLANE to further strengthen research in Unsupervised Domain Adaptation for lane detection. CARLANE, all evaluated models and the corresponding implementations are publicly available at https://carlanebenchmark.github.io.

  • 3 authors
·
Jun 16, 2022

Real-World Offline Reinforcement Learning from Vision Language Model Feedback

Offline reinforcement learning can enable policy learning from pre-collected, sub-optimal datasets without online interactions. This makes it ideal for real-world robots and safety-critical scenarios, where collecting online data or expert demonstrations is slow, costly, and risky. However, most existing offline RL works assume the dataset is already labeled with the task rewards, a process that often requires significant human effort, especially when ground-truth states are hard to ascertain (e.g., in the real-world). In this paper, we build on prior work, specifically RL-VLM-F, and propose a novel system that automatically generates reward labels for offline datasets using preference feedback from a vision-language model and a text description of the task. Our method then learns a policy using offline RL with the reward-labeled dataset. We demonstrate the system's applicability to a complex real-world robot-assisted dressing task, where we first learn a reward function using a vision-language model on a sub-optimal offline dataset, and then we use the learned reward to employ Implicit Q learning to develop an effective dressing policy. Our method also performs well in simulation tasks involving the manipulation of rigid and deformable objects, and significantly outperform baselines such as behavior cloning and inverse RL. In summary, we propose a new system that enables automatic reward labeling and policy learning from unlabeled, sub-optimal offline datasets.

  • 5 authors
·
Nov 7, 2024

MirrorGuard: Toward Secure Computer-Use Agents via Simulation-to-Real Reasoning Correction

Large foundation models are integrated into Computer Use Agents (CUAs), enabling autonomous interaction with operating systems through graphical user interfaces (GUIs) to perform complex tasks. This autonomy introduces serious security risks: malicious instructions or visual prompt injections can trigger unsafe reasoning and cause harmful system-level actions. Existing defenses, such as detection-based blocking, prevent damage but often abort tasks prematurely, reducing agent utility. In this paper, we present MirrorGuard, a plug-and-play defense framework that uses simulation-based training to improve CUA security in the real world. To reduce the cost of large-scale training in operating systems, we propose a novel neural-symbolic simulation pipeline, which generates realistic, high-risk GUI interaction trajectories entirely in a text-based simulated environment, which captures unsafe reasoning patterns and potential system hazards without executing real operations. In the simulation environment, MirrorGuard learns to intercept and rectify insecure reasoning chains of CUAs before they produce and execute unsafe actions. In real-world testing, extensive evaluations across diverse benchmarks and CUA architectures show that MirrorGuard significantly mitigates security risks. For instance, on the ByteDance UI-TARS system, it reduces the unsafe rate from 66.5% to 13.0% while maintaining a marginal false refusal rate (FRR). In contrast, the state-of-the-art GuardAgent only achieves a reduction to 53.9% and suffers from a 15.4% higher FRR. Our work proves that simulation-derived defenses can provide robust, real-world protection while maintaining the fundamental utility of the agent. Our code and model are publicly available at https://bmz-q-q.github.io/MirrorGuard/.

  • 6 authors
·
Jan 19

RLinf-USER: A Unified and Extensible System for Real-World Online Policy Learning in Embodied AI

Online policy learning directly in the physical world is a promising yet challenging direction for embodied intelligence. Unlike simulation, real-world systems cannot be arbitrarily accelerated, cheaply reset, or massively replicated, which makes scalable data collection, heterogeneous deployment, and long-horizon effective training difficult. These challenges suggest that real-world policy learning is not only an algorithmic issue but fundamentally a systems problem. We present USER, a Unified and extensible SystEm for Real-world online policy learning. USER treats physical robots as first-class hardware resources alongside GPUs through a unified hardware abstraction layer, enabling automatic discovery, management, and scheduling of heterogeneous robots. To address cloud-edge communication, USER introduces an adaptive communication plane with tunneling-based networking, distributed data channels for traffic localization, and streaming-multiprocessor-aware weight synchronization to regulate GPU-side overhead. On top of this infrastructure, USER organizes learning as a fully asynchronous framework with a persistent, cache-aware buffer, enabling efficient long-horizon experiments with robust crash recovery and reuse of historical data. In addition, USER provides extensible abstractions for rewards, algorithms, and policies, supporting online imitation or reinforcement learning of CNN/MLP, generative policies, and large vision-language-action (VLA) models within a unified pipeline. Results in both simulation and the real world show that USER enables multi-robot coordination, heterogeneous manipulators, edge-cloud collaboration with large models, and long-running asynchronous training, offering a unified and extensible systems foundation for real-world online policy learning.

RLinf RLinf
·
Feb 8 2

Simulating Fluids in Real-World Still Images

In this work, we tackle the problem of real-world fluid animation from a still image. The key of our system is a surface-based layered representation deriving from video decomposition, where the scene is decoupled into a surface fluid layer and an impervious background layer with corresponding transparencies to characterize the composition of the two layers. The animated video can be produced by warping only the surface fluid layer according to the estimation of fluid motions and recombining it with the background. In addition, we introduce surface-only fluid simulation, a 2.5D fluid calculation version, as a replacement for motion estimation. Specifically, we leverage the triangular mesh based on a monocular depth estimator to represent the fluid surface layer and simulate the motion in the physics-based framework with the inspiration of the classic theory of the hybrid Lagrangian-Eulerian method, along with a learnable network so as to adapt to complex real-world image textures. We demonstrate the effectiveness of the proposed system through comparison with existing methods in both standard objective metrics and subjective ranking scores. Extensive experiments not only indicate our method's competitive performance for common fluid scenes but also better robustness and reasonability under complex transparent fluid scenarios. Moreover, as the proposed surface-based layer representation and surface-only fluid simulation naturally disentangle the scene, interactive editing such as adding objects to the river and texture replacing could be easily achieved with realistic results.

  • 5 authors
·
Apr 24, 2022

Learning Camera Movement Control from Real-World Drone Videos

This study seeks to automate camera movement control for filming existing subjects into attractive videos, contrasting with the creation of non-existent content by directly generating the pixels. We select drone videos as our test case due to their rich and challenging motion patterns, distinctive viewing angles, and precise controls. Existing AI videography methods struggle with limited appearance diversity in simulation training, high costs of recording expert operations, and difficulties in designing heuristic-based goals to cover all scenarios. To avoid these issues, we propose a scalable method that involves collecting real-world training data to improve diversity, extracting camera trajectories automatically to minimize annotation costs, and training an effective architecture that does not rely on heuristics. Specifically, we collect 99k high-quality trajectories by running 3D reconstruction on online videos, connecting camera poses from consecutive frames to formulate 3D camera paths, and using Kalman filter to identify and remove low-quality data. Moreover, we introduce DVGFormer, an auto-regressive transformer that leverages the camera path and images from all past frames to predict camera movement in the next frame. We evaluate our system across 38 synthetic natural scenes and 7 real city 3D scans. We show that our system effectively learns to perform challenging camera movements such as navigating through obstacles, maintaining low altitude to increase perceived speed, and orbiting towers and buildings, which are very useful for recording high-quality videos. Data and code are available at dvgformer.github.io.

  • 3 authors
·
Dec 12, 2024 1