new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 2

The Open Catalyst 2025 (OC25) Dataset and Models for Solid-Liquid Interfaces

Catalysis at solid-liquid interfaces plays a central role in the advancement of energy storage and sustainable chemical production technologies. By enabling accurate, long-time scale simulations, machine learning (ML) models have the potential to accelerate the discovery of (electro)catalysts. While prior Open Catalyst datasets (OC20 and OC22) have advanced the field by providing large-scale density functional theory (DFT) data of adsorbates on surfaces at solid-gas interfaces, they do not capture the critical role of solvent and electrolyte effects at solid-liquid interfaces. To bridge this gap, we introduce the Open Catalyst 2025 (OC25) dataset, consisting of 7,801,261 calculations across 1,511,270 unique explicit solvent environments. OC25 constitutes the largest and most diverse solid-liquid interface dataset that is currently available and provides configurational and elemental diversity: spanning 88 elements, commonly used solvents/ions, varying solvent layers, and off-equilibrium sampling. State-of-the-art models trained on the OC25 dataset exhibit energy, force, and solvation energy errors as low as 0.1 eV, 0.015 eV/A, and 0.04 eV, respectively; significantly lower than than the recently released Universal Models for Atoms (UMA-OC20). Additionally, we discuss the impact of the quality of DFT-calculated forces on model training and performance. The dataset and accompanying baseline models are made openly available for the community. We anticipate the dataset to facilitate large length-scale and long-timescale simulations of catalytic transformations at solid-liquid interfaces, advancing molecular-level insights into functional interfaces and enabling the discovery of next-generation energy storage and conversion technologies.

  • 9 authors
·
Sep 22, 2025

Generative Discovery of Novel Chemical Designs using Diffusion Modeling and Transformer Deep Neural Networks with Application to Deep Eutectic Solvents

We report a series of deep learning models to solve complex forward and inverse design problems in molecular modeling and design. Using both diffusion models inspired by nonequilibrium thermodynamics and attention-based transformer architectures, we demonstrate a flexible framework to capture complex chemical structures. First trained on the QM9 dataset and a series of quantum mechanical properties (e.g. homo, lumo, free energy, heat capacity, etc.), we then generalize the model to study and design key properties of deep eutectic solvents. In addition to separate forward and inverse models, we also report an integrated fully prompt-based multi-task generative pretrained transformer model that solves multiple forward, inverse design, and prediction tasks, flexibly and within one model. We show that the multi-task generative model has the overall best performance and allows for flexible integration of multiple objectives, within one model, and for distinct chemistries, suggesting that synergies emerge during training of this large language model. Trained jointly in tasks related to the QM9 dataset and deep eutectic solvents (DESs), the model can predict various quantum mechanical properties and critical properties to achieve deep eutectic solvent behavior. Several novel combinations of DESs are proposed based on this framework.

  • 3 authors
·
Apr 24, 2023

High-Speed Imagery Analysis of Droplet Impact on Van der Waals and Non-Van der Waals Soft-Textured Oil-Infused Surfaces

This study investigates the impact of surface functionalization, oil coating, and oil absorption on droplet impact behavior on textured polydimethylsiloxane(PDMS) substrates. The textured surfaces were fabricated with square micro-posts having spacings of 5 and 20 microns. The PDMS samples were functionalized with octadecyltrichlorosilane (OTS) to improve water repellency. Following, the surfaces were either coated with or allowed to absorb two different lubricants, silicone oil (SO-5cSt) and hexadecane. We performed detailed wetting measurements on both untreated and OTS-functionalized substrates. These measurements provided useful insights into how water and lubricants were retained and distributed under static conditions. High-speed imaging was used to capture droplet impact across a range of Weber numbers. On SO-5cSt-absorbed substrates, droplets consistently showed complete rebound at all Weber numbers, regardless of post spacing. This robust rebound was attributed to the oil's ability to fill the gaps between the posts through capillary action, while also forming a stable lubricating layer above the texture. This thin oil film reduced friction between the droplet and the surface, enabling the droplet to retain sufficient energy for complete rebound. In contrast, hexadecane-absorbed substrates displayed different dynamics. At low Weber numbers, only partial rebound was observed, while at intermediate values, droplets rebounded completely. However, droplets no longer rebounded at higher Weber numbers and remained deposited. Repeated droplet impacts further demonstrated that hexadecane-infused surfaces gradually lost oil from the textured gaps, resulting in a decline in rebound performance over time. This effect was not observed with SO-5cSt, underscoring the importance of lubricant affinity and stability.

  • 3 authors
·
Oct 27, 2025