Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeEnsemble Distillation for Unsupervised Constituency Parsing
We investigate the unsupervised constituency parsing task, which organizes words and phrases of a sentence into a hierarchical structure without using linguistically annotated data. We observe that existing unsupervised parsers capture differing aspects of parsing structures, which can be leveraged to enhance unsupervised parsing performance. To this end, we propose a notion of "tree averaging," based on which we further propose a novel ensemble method for unsupervised parsing. To improve inference efficiency, we further distill the ensemble knowledge into a student model; such an ensemble-then-distill process is an effective approach to mitigate the over-smoothing problem existing in common multi-teacher distilling methods. Experiments show that our method surpasses all previous approaches, consistently demonstrating its effectiveness and robustness across various runs, with different ensemble components, and under domain-shift conditions.
Why do Random Forests Work? Understanding Tree Ensembles as Self-Regularizing Adaptive Smoothers
Despite their remarkable effectiveness and broad application, the drivers of success underlying ensembles of trees are still not fully understood. In this paper, we highlight how interpreting tree ensembles as adaptive and self-regularizing smoothers can provide new intuition and deeper insight to this topic. We use this perspective to show that, when studied as smoothers, randomized tree ensembles not only make predictions that are quantifiably more smooth than the predictions of the individual trees they consist of, but also further regulate their smoothness at test-time based on the dissimilarity between testing and training inputs. First, we use this insight to revisit, refine and reconcile two recent explanations of forest success by providing a new way of quantifying the conjectured behaviors of tree ensembles objectively by measuring the effective degree of smoothing they imply. Then, we move beyond existing explanations for the mechanisms by which tree ensembles improve upon individual trees and challenge the popular wisdom that the superior performance of forests should be understood as a consequence of variance reduction alone. We argue that the current high-level dichotomy into bias- and variance-reduction prevalent in statistics is insufficient to understand tree ensembles -- because the prevailing definition of bias does not capture differences in the expressivity of the hypothesis classes formed by trees and forests. Instead, we show that forests can improve upon trees by three distinct mechanisms that are usually implicitly entangled. In particular, we demonstrate that the smoothing effect of ensembling can reduce variance in predictions due to noise in outcome generation, reduce variability in the quality of the learned function given fixed input data and reduce potential bias in learnable functions by enriching the available hypothesis space.
Fat Polygonal Partitions with Applications to Visualization and Embeddings
Let T be a rooted and weighted tree, where the weight of any node is equal to the sum of the weights of its children. The popular Treemap algorithm visualizes such a tree as a hierarchical partition of a square into rectangles, where the area of the rectangle corresponding to any node in T is equal to the weight of that node. The aspect ratio of the rectangles in such a rectangular partition necessarily depends on the weights and can become arbitrarily high. We introduce a new hierarchical partition scheme, called a polygonal partition, which uses convex polygons rather than just rectangles. We present two methods for constructing polygonal partitions, both having guarantees on the worst-case aspect ratio of the constructed polygons; in particular, both methods guarantee a bound on the aspect ratio that is independent of the weights of the nodes. We also consider rectangular partitions with slack, where the areas of the rectangles may differ slightly from the weights of the corresponding nodes. We show that this makes it possible to obtain partitions with constant aspect ratio. This result generalizes to hyper-rectangular partitions in R^d. We use these partitions with slack for embedding ultrametrics into d-dimensional Euclidean space: we give a rm polylog(Delta)-approximation algorithm for embedding n-point ultrametrics into R^d with minimum distortion, where Delta denotes the spread of the metric, i.e., the ratio between the largest and the smallest distance between two points. The previously best-known approximation ratio for this problem was polynomial in n. This is the first algorithm for embedding a non-trivial family of weighted-graph metrics into a space of constant dimension that achieves polylogarithmic approximation ratio.
Prediction Algorithms Achieving Bayesian Decision Theoretical Optimality Based on Decision Trees as Data Observation Processes
In the field of decision trees, most previous studies have difficulty ensuring the statistical optimality of a prediction of new data and suffer from overfitting because trees are usually used only to represent prediction functions to be constructed from given data. In contrast, some studies, including this paper, used the trees to represent stochastic data observation processes behind given data. Moreover, they derived the statistically optimal prediction, which is robust against overfitting, based on the Bayesian decision theory by assuming a prior distribution for the trees. However, these studies still have a problem in computing this Bayes optimal prediction because it involves an infeasible summation for all division patterns of a feature space, which is represented by the trees and some parameters. In particular, an open problem is a summation with respect to combinations of division axes, i.e., the assignment of features to inner nodes of the tree. We solve this by a Markov chain Monte Carlo method, whose step size is adaptively tuned according to a posterior distribution for the trees.
Treemaps with Bounded Aspect Ratio
Treemaps are a popular technique to visualize hierarchical data. The input is a weighted tree tree where the weight of each node is the sum of the weights of its children. A treemap for tree is a hierarchical partition of a rectangle into simply connected regions, usually rectangles. Each region represents a node of tree and its area is proportional to the weight of the corresponding node. An important quality criterion for treemaps is the aspect ratio of its regions. One cannot bound the aspect ratio if the regions are restricted to be rectangles. In contrast, polygonal partitions, that use convex polygons, have bounded aspect ratio. We are the first to obtain convex partitions with optimal aspect ratio O(depth(tree)). However, depth(tree) still depends on the input tree. Hence we introduce a new type of treemaps, namely orthoconvex treemaps, where regions representing leaves are rectangles, L-, and S-shapes, and regions representing internal nodes are orthoconvex polygons. We prove that any input tree, irrespective of the weights of the nodes and the depth of the tree, admits an orthoconvex treemap of constant aspect ratio. We also obtain several specialized results for single-level treemaps, that is, treemaps where the input tree has depth~1.
One Tree to Rule Them All: Poly-Logarithmic Universal Steiner Tree
A spanning tree T of graph G is a rho-approximate universal Steiner tree (UST) for root vertex r if, for any subset of vertices S containing r, the cost of the minimal subgraph of T connecting S is within a rho factor of the minimum cost tree connecting S in G. Busch et al. (FOCS 2012) showed that every graph admits 2^{O(log n)}-approximate USTs by showing that USTs are equivalent to strong sparse partition hierarchies (up to poly-logs). Further, they posed poly-logarithmic USTs and strong sparse partition hierarchies as open questions. We settle these open questions by giving polynomial-time algorithms for computing both O(log ^ 7 n)-approximate USTs and poly-logarithmic strong sparse partition hierarchies. For graphs with constant doubling dimension or constant pathwidth we improve this to O(log n)-approximate USTs and O(1) strong sparse partition hierarchies. Our doubling dimension result is tight up to second order terms. We reduce the existence of these objects to the previously studied cluster aggregation problem and what we call dangling nets.
An AI system to help scientists write expert-level empirical software
The cycle of scientific discovery is frequently bottlenecked by the slow, manual creation of software to support computational experiments. To address this, we present an AI system that creates expert-level scientific software whose goal is to maximize a quality metric. The system uses a Large Language Model (LLM) and Tree Search (TS) to systematically improve the quality metric and intelligently navigate the large space of possible solutions. The system achieves expert-level results when it explores and integrates complex research ideas from external sources. The effectiveness of tree search is demonstrated across a wide range of benchmarks. In bioinformatics, it discovered 40 novel methods for single-cell data analysis that outperformed the top human-developed methods on a public leaderboard. In epidemiology, it generated 14 models that outperformed the CDC ensemble and all other individual models for forecasting COVID-19 hospitalizations. Our method also produced state-of-the-art software for geospatial analysis, neural activity prediction in zebrafish, time series forecasting and numerical solution of integrals. By devising and implementing novel solutions to diverse tasks, the system represents a significant step towards accelerating scientific progress.
On Computing Optimal Tree Ensembles
Random forests and, more generally, (decision\nobreakdash-)tree ensembles are widely used methods for classification and regression. Recent algorithmic advances allow to compute decision trees that are optimal for various measures such as their size or depth. We are not aware of such research for tree ensembles and aim to contribute to this area. Mainly, we provide two novel algorithms and corresponding lower bounds. First, we are able to carry over and substantially improve on tractability results for decision trees, obtaining a (6delta D S)^S cdot poly-time algorithm, where S is the number of cuts in the tree ensemble, D the largest domain size, and delta is the largest number of features in which two examples differ. To achieve this, we introduce the witness-tree technique which also seems promising for practice. Second, we show that dynamic programming, which has been successful for decision trees, may also be viable for tree ensembles, providing an ell^n cdot poly-time algorithm, where ell is the number of trees and n the number of examples. Finally, we compare the number of cuts necessary to classify training data sets for decision trees and tree ensembles, showing that ensembles may need exponentially fewer cuts for increasing number of trees.
Effective and Efficient Federated Tree Learning on Hybrid Data
Federated learning has emerged as a promising distributed learning paradigm that facilitates collaborative learning among multiple parties without transferring raw data. However, most existing federated learning studies focus on either horizontal or vertical data settings, where the data of different parties are assumed to be from the same feature or sample space. In practice, a common scenario is the hybrid data setting, where data from different parties may differ both in the features and samples. To address this, we propose HybridTree, a novel federated learning approach that enables federated tree learning on hybrid data. We observe the existence of consistent split rules in trees. With the help of these split rules, we theoretically show that the knowledge of parties can be incorporated into the lower layers of a tree. Based on our theoretical analysis, we propose a layer-level solution that does not need frequent communication traffic to train a tree. Our experiments demonstrate that HybridTree can achieve comparable accuracy to the centralized setting with low computational and communication overhead. HybridTree can achieve up to 8 times speedup compared with the other baselines.
Layer-wise Linear Mode Connectivity
Averaging neural network parameters is an intuitive method for fusing the knowledge of two independent models. It is most prominently used in federated learning. If models are averaged at the end of training, this can only lead to a good performing model if the loss surface of interest is very particular, i.e., the loss in the midpoint between the two models needs to be sufficiently low. This is impossible to guarantee for the non-convex losses of state-of-the-art networks. For averaging models trained on vastly different datasets, it was proposed to average only the parameters of particular layers or combinations of layers, resulting in better performing models. To get a better understanding of the effect of layer-wise averaging, we analyse the performance of the models that result from averaging single layers, or groups of layers. Based on our empirical and theoretical investigation, we introduce a novel notion of the layer-wise linear connectivity, and show that deep networks do not have layer-wise barriers between them.
Interfering Paths in Decision Trees: A Note on Deodata Predictors
A technique for improving the prediction accuracy of decision trees is proposed. It consists in evaluating the tree's branches in parallel over multiple paths. The technique enables predictions that are more aligned with the ones generated by the nearest neighborhood variant of the deodata algorithms. The technique also enables the hybridization of the decision tree algorithm with the nearest neighborhood variant.
Diverse Weight Averaging for Out-of-Distribution Generalization
Standard neural networks struggle to generalize under distribution shifts in computer vision. Fortunately, combining multiple networks can consistently improve out-of-distribution generalization. In particular, weight averaging (WA) strategies were shown to perform best on the competitive DomainBed benchmark; they directly average the weights of multiple networks despite their nonlinearities. In this paper, we propose Diverse Weight Averaging (DiWA), a new WA strategy whose main motivation is to increase the functional diversity across averaged models. To this end, DiWA averages weights obtained from several independent training runs: indeed, models obtained from different runs are more diverse than those collected along a single run thanks to differences in hyperparameters and training procedures. We motivate the need for diversity by a new bias-variance-covariance-locality decomposition of the expected error, exploiting similarities between WA and standard functional ensembling. Moreover, this decomposition highlights that WA succeeds when the variance term dominates, which we show occurs when the marginal distribution changes at test time. Experimentally, DiWA consistently improves the state of the art on DomainBed without inference overhead.
How Long It Takes for an Ordinary Node with an Ordinary ID to Output?
In the context of distributed synchronous computing, processors perform in rounds, and the time-complexity of a distributed algorithm is classically defined as the number of rounds before all computing nodes have output. Hence, this complexity measure captures the running time of the slowest node(s). In this paper, we are interested in the running time of the ordinary nodes, to be compared with the running time of the slowest nodes. The node-averaged time-complexity of a distributed algorithm on a given instance is defined as the average, taken over every node of the instance, of the number of rounds before that node output. We compare the node-averaged time-complexity with the classical one in the standard LOCAL model for distributed network computing. We show that there can be an exponential gap between the node-averaged time-complexity and the classical time-complexity, as witnessed by, e.g., leader election. Our first main result is a positive one, stating that, in fact, the two time-complexities behave the same for a large class of problems on very sparse graphs. In particular, we show that, for LCL problems on cycles, the node-averaged time complexity is of the same order of magnitude as the slowest node time-complexity. In addition, in the LOCAL model, the time-complexity is computed as a worst case over all possible identity assignments to the nodes of the network. In this paper, we also investigate the ID-averaged time-complexity, when the number of rounds is averaged over all possible identity assignments. Our second main result is that the ID-averaged time-complexity is essentially the same as the expected time-complexity of randomized algorithms (where the expectation is taken over all possible random bits used by the nodes, and the number of rounds is measured for the worst-case identity assignment). Finally, we study the node-averaged ID-averaged time-complexity.
SegmentAnyTree: A sensor and platform agnostic deep learning model for tree segmentation using laser scanning data
This research advances individual tree crown (ITC) segmentation in lidar data, using a deep learning model applicable to various laser scanning types: airborne (ULS), terrestrial (TLS), and mobile (MLS). It addresses the challenge of transferability across different data characteristics in 3D forest scene analysis. The study evaluates the model's performance based on platform (ULS, MLS) and data density, testing five scenarios with varying input data, including sparse versions, to gauge adaptability and canopy layer efficacy. The model, based on PointGroup architecture, is a 3D CNN with separate heads for semantic and instance segmentation, validated on diverse point cloud datasets. Results show point cloud sparsification enhances performance, aiding sparse data handling and improving detection in dense forests. The model performs well with >50 points per sq. m densities but less so at 10 points per sq. m due to higher omission rates. It outperforms existing methods (e.g., Point2Tree, TLS2trees) in detection, omission, commission rates, and F1 score, setting new benchmarks on LAUTx, Wytham Woods, and TreeLearn datasets. In conclusion, this study shows the feasibility of a sensor-agnostic model for diverse lidar data, surpassing sensor-specific approaches and setting new standards in tree segmentation, particularly in complex forests. This contributes to future ecological modeling and forest management advancements.
Learning a Decision Tree Algorithm with Transformers
Decision trees are renowned for their interpretability capability to achieve high predictive performance, especially on tabular data. Traditionally, they are constructed through recursive algorithms, where they partition the data at every node in a tree. However, identifying the best partition is challenging, as decision trees optimized for local segments may not bring global generalization. To address this, we introduce MetaTree, which trains a transformer-based model on filtered outputs from classical algorithms to produce strong decision trees for classification. Specifically, we fit both greedy decision trees and optimized decision trees on a large number of datasets. We then train MetaTree to produce the trees that achieve strong generalization performance. This training enables MetaTree to not only emulate these algorithms, but also to intelligently adapt its strategy according to the context, thereby achieving superior generalization performance.
Re-evaluating Evaluation
Progress in machine learning is measured by careful evaluation on problems of outstanding common interest. However, the proliferation of benchmark suites and environments, adversarial attacks, and other complications has diluted the basic evaluation model by overwhelming researchers with choices. Deliberate or accidental cherry picking is increasingly likely, and designing well-balanced evaluation suites requires increasing effort. In this paper we take a step back and propose Nash averaging. The approach builds on a detailed analysis of the algebraic structure of evaluation in two basic scenarios: agent-vs-agent and agent-vs-task. The key strength of Nash averaging is that it automatically adapts to redundancies in evaluation data, so that results are not biased by the incorporation of easy tasks or weak agents. Nash averaging thus encourages maximally inclusive evaluation -- since there is no harm (computational cost aside) from including all available tasks and agents.
On Model Stability as a Function of Random Seed
In this paper, we focus on quantifying model stability as a function of random seed by investigating the effects of the induced randomness on model performance and the robustness of the model in general. We specifically perform a controlled study on the effect of random seeds on the behaviour of attention, gradient-based and surrogate model based (LIME) interpretations. Our analysis suggests that random seeds can adversely affect the consistency of models resulting in counterfactual interpretations. We propose a technique called Aggressive Stochastic Weight Averaging (ASWA)and an extension called Norm-filtered Aggressive Stochastic Weight Averaging (NASWA) which improves the stability of models over random seeds. With our ASWA and NASWA based optimization, we are able to improve the robustness of the original model, on average reducing the standard deviation of the model's performance by 72%.
Convex Aggregation for Opinion Summarization
Recent advances in text autoencoders have significantly improved the quality of the latent space, which enables models to generate grammatical and consistent text from aggregated latent vectors. As a successful application of this property, unsupervised opinion summarization models generate a summary by decoding the aggregated latent vectors of inputs. More specifically, they perform the aggregation via simple average. However, little is known about how the vector aggregation step affects the generation quality. In this study, we revisit the commonly used simple average approach by examining the latent space and generated summaries. We found that text autoencoders tend to generate overly generic summaries from simply averaged latent vectors due to an unexpected L_2-norm shrinkage in the aggregated latent vectors, which we refer to as summary vector degeneration. To overcome this issue, we develop a framework Coop, which searches input combinations for the latent vector aggregation using input-output word overlap. Experimental results show that Coop successfully alleviates the summary vector degeneration issue and establishes new state-of-the-art performance on two opinion summarization benchmarks. Code is available at https://github.com/megagonlabs/coop.
Sparse Model Soups: A Recipe for Improved Pruning via Model Averaging
Neural networks can be significantly compressed by pruning, yielding sparse models with reduced storage and computational demands while preserving predictive performance. Model soups (Wortsman et al., 2022) enhance generalization and out-of-distribution (OOD) performance by averaging the parameters of multiple models into a single one, without increasing inference time. However, achieving both sparsity and parameter averaging is challenging as averaging arbitrary sparse models reduces the overall sparsity due to differing sparse connectivities. This work addresses these challenges by demonstrating that exploring a single retraining phase of Iterative Magnitude Pruning (IMP) with varied hyperparameter configurations such as batch ordering or weight decay yields models suitable for averaging, sharing identical sparse connectivity by design. Averaging these models significantly enhances generalization and OOD performance over their individual counterparts. Building on this, we introduce Sparse Model Soups (SMS), a novel method for merging sparse models by initiating each prune-retrain cycle with the averaged model from the previous phase. SMS preserves sparsity, exploits sparse network benefits, is modular and fully parallelizable, and substantially improves IMP's performance. We further demonstrate that SMS can be adapted to enhance state-of-the-art pruning-during-training approaches.
Tree-based Forecasting of Day-ahead Solar Power Generation from Granular Meteorological Features
Accurate forecasts for day-ahead photovoltaic (PV) power generation are crucial to support a high PV penetration rate in the local electricity grid and to assure stability in the grid. We use state-of-the-art tree-based machine learning methods to produce such forecasts and, unlike previous studies, we hereby account for (i) the effects various meteorological as well as astronomical features have on PV power production, and this (ii) at coarse as well as granular spatial locations. To this end, we use data from Belgium and forecast day-ahead PV power production at an hourly resolution. The insights from our study can assist utilities, decision-makers, and other stakeholders in optimizing grid operations, economic dispatch, and in facilitating the integration of distributed PV power into the electricity grid.
TreeSynth: Synthesizing Diverse Data from Scratch via Tree-Guided Subspace Partitioning
Model customization necessitates high-quality and diverse datasets, but acquiring such data remains time-consuming and labor-intensive. Despite the great potential of large language models (LLMs) for data synthesis, current approaches are constrained by limited seed data, model biases, and low-variation prompts, resulting in limited diversity and biased distributions with the increase of data scales. To tackle this challenge, we introduce TREESYNTH, a tree-guided subspace-based data synthesis approach inspired by decision trees. It constructs a spatial partitioning tree to recursively divide a task-specific full data space (i.e., root node) into numerous atomic subspaces (i.e., leaf nodes) with mutually exclusive and exhaustive attributes to ensure both distinctiveness and comprehensiveness before synthesizing samples within each atomic subspace. This globally dividing-and-synthesizing method finally collects subspace samples into a comprehensive dataset, effectively circumventing repetition and space collapse to ensure the diversity of large-scale data synthesis. Furthermore, the spatial partitioning tree enables sample allocation into atomic subspaces, allowing the rebalancing of existing datasets for more balanced and comprehensive distributions. Empirically, extensive experiments across diverse benchmarks consistently demonstrate the superior data diversity, model performance, and robust scalability of TREESYNTH compared to both human-crafted datasets and peer data synthesis methods, with an average performance gain reaching 10%. Besides, the consistent improvements of TREESYNTH-balanced datasets highlight its efficacious application to redistribute existing datasets for more comprehensive coverage and the induced performance enhancement. The code is available at https://github.com/cpa2001/TreeSynth.
Souper-Model: How Simple Arithmetic Unlocks State-of-the-Art LLM Performance
Large Language Models (LLMs) have demonstrated remarkable capabilities across diverse domains, but their training remains resource- and time-intensive, requiring massive compute power and careful orchestration of training procedures. Model souping-the practice of averaging weights from multiple models of the same architecture-has emerged as a promising pre- and post-training technique that can enhance performance without expensive retraining. In this paper, we introduce Soup Of Category Experts (SoCE), a principled approach for model souping that utilizes benchmark composition to identify optimal model candidates and applies non-uniform weighted averaging to maximize performance. Contrary to previous uniform-averaging approaches, our method leverages the observation that benchmark categories often exhibit low inter-correlations in model performance. SoCE identifies "expert" models for each weakly-correlated category cluster and combines them using optimized weighted averaging rather than uniform weights. We demonstrate that the proposed method improves performance and robustness across multiple domains, including multilingual capabilities, tool calling, and math and achieves state-of-the-art results on the Berkeley Function Calling Leaderboard.
Autoregressive Generation of Static and Growing Trees
We propose a transformer architecture and training strategy for tree generation. The architecture processes data at multiple resolutions and has an hourglass shape, with middle layers processing fewer tokens than outer layers. Similar to convolutional networks, we introduce longer range skip connections to completent this multi-resolution approach. The key advantage of this architecture is the faster processing speed and lower memory consumption. We are therefore able to process more complex trees than would be possible with a vanilla transformer architecture. Furthermore, we extend this approach to perform image-to-tree and point-cloud-to-tree conditional generation and to simulate the tree growth processes, generating 4D trees. Empirical results validate our approach in terms of speed, memory consumption, and generation quality.
SLUGGER: Lossless Hierarchical Summarization of Massive Graphs
Given a massive graph, how can we exploit its hierarchical structure for concisely but exactly summarizing the graph? By exploiting the structure, can we achieve better compression rates than state-of-the-art graph summarization methods? The explosive proliferation of the Web has accelerated the emergence of large graphs, such as online social networks and hyperlink networks. Consequently, graph compression has become increasingly important to process such large graphs without expensive I/O over the network or to disk. Among a number of approaches, graph summarization, which in essence combines similar nodes into a supernode and describe their connectivity concisely, protrudes with several advantages. However, we note that it fails to exploit pervasive hierarchical structures of real-world graphs as its underlying representation model enforces supernodes to be disjoint. In this work, we propose the hierarchical graph summarization model, which is an expressive graph representation model that includes the previous one proposed by Navlakha et al. as a special case. The new model represents an unweighted graph using positive and negative edges between hierarchical supernodes, each of which can contain others. Then, we propose Slugger, a scalable heuristic for concisely and exactly representing a given graph under our new model. Slugger greedily merges nodes into supernodes while maintaining and exploiting their hierarchy, which is later pruned. Slugger significantly accelerates this process by sampling, approximation, and memoization. Our experiments on 16 real-world graphs show that Slugger is (a) Effective: yielding up to 29.6% more concise summary than state-of-the-art lossless summarization methods, (b) Fast: summarizing a graph with 0.8 billion edges in a few hours, and (c) Scalable: scaling linearly with the number of edges in the input graph.
Automated forest inventory: analysis of high-density airborne LiDAR point clouds with 3D deep learning
Detailed forest inventories are critical for sustainable and flexible management of forest resources, to conserve various ecosystem services. Modern airborne laser scanners deliver high-density point clouds with great potential for fine-scale forest inventory and analysis, but automatically partitioning those point clouds into meaningful entities like individual trees or tree components remains a challenge. The present study aims to fill this gap and introduces a deep learning framework, termed ForAINet, that is able to perform such a segmentation across diverse forest types and geographic regions. From the segmented data, we then derive relevant biophysical parameters of individual trees as well as stands. The system has been tested on FOR-Instance, a dataset of point clouds that have been acquired in five different countries using surveying drones. The segmentation back-end achieves over 85% F-score for individual trees, respectively over 73% mean IoU across five semantic categories: ground, low vegetation, stems, live branches and dead branches. Building on the segmentation results our pipeline then densely calculates biophysical features of each individual tree (height, crown diameter, crown volume, DBH, and location) and properties per stand (digital terrain model and stand density). Especially crown-related features are in most cases retrieved with high accuracy, whereas the estimates for DBH and location are less reliable, due to the airborne scanning setup.
Graph Degree Linkage: Agglomerative Clustering on a Directed Graph
This paper proposes a simple but effective graph-based agglomerative algorithm, for clustering high-dimensional data. We explore the different roles of two fundamental concepts in graph theory, indegree and outdegree, in the context of clustering. The average indegree reflects the density near a sample, and the average outdegree characterizes the local geometry around a sample. Based on such insights, we define the affinity measure of clusters via the product of average indegree and average outdegree. The product-based affinity makes our algorithm robust to noise. The algorithm has three main advantages: good performance, easy implementation, and high computational efficiency. We test the algorithm on two fundamental computer vision problems: image clustering and object matching. Extensive experiments demonstrate that it outperforms the state-of-the-arts in both applications.
OAM-TCD: A globally diverse dataset of high-resolution tree cover maps
Accurately quantifying tree cover is an important metric for ecosystem monitoring and for assessing progress in restored sites. Recent works have shown that deep learning-based segmentation algorithms are capable of accurately mapping trees at country and continental scales using high-resolution aerial and satellite imagery. Mapping at high (ideally sub-meter) resolution is necessary to identify individual trees, however there are few open-access datasets containing instance level annotations and those that exist are small or not geographically diverse. We present a novel open-access dataset for individual tree crown delineation (TCD) in high-resolution aerial imagery sourced from OpenAerialMap (OAM). Our dataset, OAM-TCD, comprises 5072 2048x2048 px images at 10 cm/px resolution with associated human-labeled instance masks for over 280k individual and 56k groups of trees. By sampling imagery from around the world, we are able to better capture the diversity and morphology of trees in different terrestrial biomes and in both urban and natural environments. Using our dataset, we train reference instance and semantic segmentation models that compare favorably to existing state-of-the-art models. We assess performance through k-fold cross-validation and comparison with existing datasets; additionally we demonstrate compelling results on independent aerial imagery captured over Switzerland and compare to municipal tree inventories and LIDAR-derived canopy maps in the city of Zurich. Our dataset, models and training/benchmark code are publicly released under permissive open-source licenses: Creative Commons (majority CC BY 4.0), and Apache 2.0 respectively.
PrediTree: A Multi-Temporal Sub-meter Dataset of Multi-Spectral Imagery Aligned With Canopy Height Maps
We present PrediTree, the first comprehensive open-source dataset designed for training and evaluating tree height prediction models at sub-meter resolution. This dataset combines very high-resolution (0.5m) LiDAR-derived canopy height maps, spatially aligned with multi-temporal and multi-spectral imagery, across diverse forest ecosystems in France, totaling 3,141,568 images. PrediTree addresses a critical gap in forest monitoring capabilities by enabling the training of deep learning methods that can predict tree growth based on multiple past observations. %Initially focused on French forests, PrediTree is designed as an expanding resource with ongoing efforts to incorporate data from other countries. To make use of this PrediTree dataset, we propose an encoder-decoder framework that requires the multi-temporal multi-spectral imagery and the relative time differences in years between the canopy height map timestamp (target) and each image acquisition date for which this framework predicts the canopy height. The conducted experiments demonstrate that a U-Net architecture trained on the PrediTree dataset provides the highest masked mean squared error of 11.78%, outperforming the next-best architecture, ResNet-50, by around 12%, and cutting the error of the same experiments but on fewer bands (red, green, blue only), by around 30%. This dataset is publicly available on URL{HuggingFace}, and both processing and training codebases are available on URL{GitHub}.
Representation Tradeoffs for Hyperbolic Embeddings
Hyperbolic embeddings offer excellent quality with few dimensions when embedding hierarchical data structures like synonym or type hierarchies. Given a tree, we give a combinatorial construction that embeds the tree in hyperbolic space with arbitrarily low distortion without using optimization. On WordNet, our combinatorial embedding obtains a mean-average-precision of 0.989 with only two dimensions, while Nickel et al.'s recent construction obtains 0.87 using 200 dimensions. We provide upper and lower bounds that allow us to characterize the precision-dimensionality tradeoff inherent in any hyperbolic embedding. To embed general metric spaces, we propose a hyperbolic generalization of multidimensional scaling (h-MDS). We show how to perform exact recovery of hyperbolic points from distances, provide a perturbation analysis, and give a recovery result that allows us to reduce dimensionality. The h-MDS approach offers consistently low distortion even with few dimensions across several datasets. Finally, we extract lessons from the algorithms and theory above to design a PyTorch-based implementation that can handle incomplete information and is scalable.
A heuristic extending the Squarified treemapping algorithm
A heuristic extending the Squarified Treemap technique for the representation of hierarchical information as treemaps is presented. The original technique gives high quality treemap views, since items are laid out with rectangles that approximate squares, allowing easy comparison and selection operations. New key steps, with a low computational impact, have been introduced to yield treemaps with even better aspect ratios and higher homogeneity among items.
When Does Bottom-up Beat Top-down in Hierarchical Community Detection?
Hierarchical clustering of networks consists in finding a tree of communities, such that lower levels of the hierarchy reveal finer-grained community structures. There are two main classes of algorithms tackling this problem. Divisive (top-down) algorithms recursively partition the nodes into two communities, until a stopping rule indicates that no further split is needed. In contrast, agglomerative (bottom-up) algorithms first identify the smallest community structure and then repeatedly merge the communities using a linkage method. In this article, we establish theoretical guarantees for the recovery of the hierarchical tree and community structure of a Hierarchical Stochastic Block Model by a bottom-up algorithm. We also establish that this bottom-up algorithm attains the information-theoretic threshold for exact recovery at intermediate levels of the hierarchy. Notably, these recovery conditions are less restrictive compared to those existing for top-down algorithms. This shows that bottom-up algorithms extend the feasible region for achieving exact recovery at intermediate levels. Numerical experiments on both synthetic and real data sets confirm the superiority of bottom-up algorithms over top-down algorithms. We also observe that top-down algorithms can produce dendrograms with inversions. These findings contribute to a better understanding of hierarchical clustering techniques and their applications in network analysis.
Heaps' law and Heaps functions in tagged texts: Evidences of their linguistic relevance
We study the relationship between vocabulary size and text length in a corpus of 75 literary works in English, authored by six writers, distinguishing between the contributions of three grammatical classes (or ``tags,'' namely, {\it nouns}, {\it verbs}, and {\it others}), and analyze the progressive appearance of new words of each tag along each individual text. While the power-law relation prescribed by Heaps' law is satisfactorily fulfilled by total vocabulary sizes and text lengths, the appearance of new words in each text is on the whole well described by the average of random shufflings of the text, which does not obey a power law. Deviations from this average, however, are statistically significant and show a systematic trend across the corpus. Specifically, they reveal that the appearance of new words along each text is predominantly retarded with respect to the average of random shufflings. Moreover, different tags are shown to add systematically distinct contributions to this tendency, with {\it verbs} and {\it others} being respectively more and less retarded than the mean trend, and {\it nouns} following instead this overall mean. These statistical systematicities are likely to point to the existence of linguistically relevant information stored in the different variants of Heaps' law, a feature that is still in need of extensive assessment.
Climate-sensitive Urban Planning through Optimization of Tree Placements
Climate change is increasing the intensity and frequency of many extreme weather events, including heatwaves, which results in increased thermal discomfort and mortality rates. While global mitigation action is undoubtedly necessary, so is climate adaptation, e.g., through climate-sensitive urban planning. Among the most promising strategies is harnessing the benefits of urban trees in shading and cooling pedestrian-level environments. Our work investigates the challenge of optimal placement of such trees. Physical simulations can estimate the radiative and thermal impact of trees on human thermal comfort but induce high computational costs. This rules out optimization of tree placements over large areas and considering effects over longer time scales. Hence, we employ neural networks to simulate the point-wise mean radiant temperatures--a driving factor of outdoor human thermal comfort--across various time scales, spanning from daily variations to extended time scales of heatwave events and even decades. To optimize tree placements, we harness the innate local effect of trees within the iterated local search framework with tailored adaptations. We show the efficacy of our approach across a wide spectrum of study areas and time scales. We believe that our approach is a step towards empowering decision-makers, urban designers and planners to proactively and effectively assess the potential of urban trees to mitigate heat stress.
PureForest: A Large-scale Aerial Lidar and Aerial Imagery Dataset for Tree Species Classification in Monospecific Forests
Knowledge of tree species distribution is fundamental to managing forests. New deep learning approaches promise significant accuracy gains for forest mapping, and are becoming a critical tool for mapping multiple tree species at scale. To advance the field, deep learning researchers need large benchmark datasets with high-quality annotations. To this end, we present the PureForest dataset: a large-scale, open, multimodal dataset designed for tree species classification from both Aerial Lidar Scanning (ALS) point clouds and Very High Resolution (VHR) aerial images. Most current public Lidar datasets for tree species classification have low diversity as they only span a small area of a few dozen annotated hectares at most. In contrast, PureForest has 18 tree species grouped into 13 semantic classes, and spans 339 km^2 across 449 distinct monospecific forests, and is to date the largest and most comprehensive Lidar dataset for the identification of tree species. By making PureForest publicly available, we hope to provide a challenging benchmark dataset to support the development of deep learning approaches for tree species identification from Lidar and/or aerial imagery. In this data paper, we describe the annotation workflow, the dataset, the recommended evaluation methodology, and establish a baseline performance from both 3D and 2D modalities.
Tree-D Fusion: Simulation-Ready Tree Dataset from Single Images with Diffusion Priors
We introduce Tree D-fusion, featuring the first collection of 600,000 environmentally aware, 3D simulation-ready tree models generated through Diffusion priors. Each reconstructed 3D tree model corresponds to an image from Google's Auto Arborist Dataset, comprising street view images and associated genus labels of trees across North America. Our method distills the scores of two tree-adapted diffusion models by utilizing text prompts to specify a tree genus, thus facilitating shape reconstruction. This process involves reconstructing a 3D tree envelope filled with point markers, which are subsequently utilized to estimate the tree's branching structure using the space colonization algorithm conditioned on a specified genus.
Evaluating the Impact of Source Code Parsers on ML4SE Models
As researchers and practitioners apply Machine Learning to increasingly more software engineering problems, the approaches they use become more sophisticated. A lot of modern approaches utilize internal code structure in the form of an abstract syntax tree (AST) or its extensions: path-based representation, complex graph combining AST with additional edges. Even though the process of extracting ASTs from code can be done with different parsers, the impact of choosing a parser on the final model quality remains unstudied. Moreover, researchers often omit the exact details of extracting particular code representations. In this work, we evaluate two models, namely Code2Seq and TreeLSTM, in the method name prediction task backed by eight different parsers for the Java language. To unify the process of data preparation with different parsers, we develop SuperParser, a multi-language parser-agnostic library based on PathMiner. SuperParser facilitates the end-to-end creation of datasets suitable for training and evaluation of ML models that work with structural information from source code. Our results demonstrate that trees built by different parsers vary in their structure and content. We then analyze how this diversity affects the models' quality and show that the quality gap between the most and least suitable parsers for both models turns out to be significant. Finally, we discuss other features of the parsers that researchers and practitioners should take into account when selecting a parser along with the impact on the models' quality. The code of SuperParser is publicly available at https://doi.org/10.5281/zenodo.6366591. We also publish Java-norm, the dataset we use to evaluate the models: https://doi.org/10.5281/zenodo.6366599.
Networks bijective to permutations
We study the set of networks, which consist of sources, sinks and neutral points, bijective to the permutations. The set of directed edges, which characterizes a network, is constructed from a polyomino or a Rothe diagram of a permutation through a Dyck tiling on a ribbon. We introduce a new combinatorial object similar to a tree-like tableau, which we call a forest. A forest is shown to give a permutation, and be bijective to a network corresponding to the inverse of the permutation. We show that the poset of networks is a finite graded lattice and admits an EL-labeling. By use of this EL-labeling, we show the lattice is supersolvable and compute the M\"obius function of an interval of the poset.
GRANDE: Gradient-Based Decision Tree Ensembles for Tabular Data
Despite the success of deep learning for text and image data, tree-based ensemble models are still state-of-the-art for machine learning with heterogeneous tabular data. However, there is a significant need for tabular-specific gradient-based methods due to their high flexibility. In this paper, we propose GRANDE, GRAdieNt-Based Decision Tree Ensembles, a novel approach for learning hard, axis-aligned decision tree ensembles using end-to-end gradient descent. GRANDE is based on a dense representation of tree ensembles, which affords to use backpropagation with a straight-through operator to jointly optimize all model parameters. Our method combines axis-aligned splits, which is a useful inductive bias for tabular data, with the flexibility of gradient-based optimization. Furthermore, we introduce an advanced instance-wise weighting that facilitates learning representations for both, simple and complex relations, within a single model. We conducted an extensive evaluation on a predefined benchmark with 19 classification datasets and demonstrate that our method outperforms existing gradient-boosting and deep learning frameworks on most datasets. The method is available under: https://github.com/s-marton/GRANDE
Digestion Algorithm in Hierarchical Symbolic Forests: A Fast Text Normalization Algorithm and Semantic Parsing Framework for Specific Scenarios and Lightweight Deployment
Text Normalization and Semantic Parsing have numerous applications in natural language processing, such as natural language programming, paraphrasing, data augmentation, constructing expert systems, text matching, and more. Despite the prominent achievements of deep learning in Large Language Models (LLMs), the interpretability of neural network architectures is still poor, which affects their credibility and hence limits the deployments of risk-sensitive scenarios. In certain scenario-specific domains with scarce data, rapidly obtaining a large number of supervised learning labels is challenging, and the workload of manually labeling data would be enormous. Catastrophic forgetting in neural networks further leads to low data utilization rates. In situations where swift responses are vital, the density of the model makes local deployment difficult and the response time long, which is not conducive to local applications of these fields. Inspired by the multiplication rule, a principle of combinatorial mathematics, and human thinking patterns, a multilayer framework along with its algorithm, the Digestion Algorithm in Hierarchical Symbolic Forests (DAHSF), is proposed to address these above issues, combining text normalization and semantic parsing workflows. The Chinese Scripting Language "Fire Bunny Intelligent Development Platform V2.0" is an important test and application of the technology discussed in this paper. DAHSF can run locally in scenario-specific domains on little datasets, with model size and memory usage optimized by at least two orders of magnitude, thus improving the execution speed, and possessing a promising optimization outlook.
Regularizing and Optimizing LSTM Language Models
Recurrent neural networks (RNNs), such as long short-term memory networks (LSTMs), serve as a fundamental building block for many sequence learning tasks, including machine translation, language modeling, and question answering. In this paper, we consider the specific problem of word-level language modeling and investigate strategies for regularizing and optimizing LSTM-based models. We propose the weight-dropped LSTM which uses DropConnect on hidden-to-hidden weights as a form of recurrent regularization. Further, we introduce NT-ASGD, a variant of the averaged stochastic gradient method, wherein the averaging trigger is determined using a non-monotonic condition as opposed to being tuned by the user. Using these and other regularization strategies, we achieve state-of-the-art word level perplexities on two data sets: 57.3 on Penn Treebank and 65.8 on WikiText-2. In exploring the effectiveness of a neural cache in conjunction with our proposed model, we achieve an even lower state-of-the-art perplexity of 52.8 on Penn Treebank and 52.0 on WikiText-2.
Train-Once Plan-Anywhere Kinodynamic Motion Planning via Diffusion Trees
Kinodynamic motion planning is concerned with computing collision-free trajectories while abiding by the robot's dynamic constraints. This critical problem is often tackled using sampling-based planners (SBPs) that explore the robot's high-dimensional state space by constructing a search tree via action propagations. Although SBPs can offer global guarantees on completeness and solution quality, their performance is often hindered by slow exploration due to uninformed action sampling. Learning-based approaches can yield significantly faster runtimes, yet they fail to generalize to out-of-distribution (OOD) scenarios and lack critical guarantees, e.g., safety, thus limiting their deployment on physical robots. We present Diffusion Tree (DiTree): a provably-generalizable framework leveraging diffusion policies (DPs) as informed samplers to efficiently guide state-space search within SBPs. DiTree combines DP's ability to model complex distributions of expert trajectories, conditioned on local observations, with the completeness of SBPs to yield provably-safe solutions within a few action propagation iterations for complex dynamical systems. We demonstrate DiTree's power with an implementation combining the popular RRT planner with a DP action sampler trained on a single environment. In comprehensive evaluations on OOD scenarios, % DiTree has comparable runtimes to a standalone DP (3x faster than classical SBPs), while improving the average success rate over DP and SBPs. DiTree is on average 3x faster than classical SBPs, and outperforms all other approaches by achieving roughly 30\% higher success rate. Project webpage: https://sites.google.com/view/ditree.
Parsed Categoric Encodings with Automunge
The Automunge open source python library platform for tabular data pre-processing automates feature engineering data transformations of numerical encoding and missing data infill to received tidy data on bases fit to properties of columns in a designated train set for consistent and efficient application to subsequent data pipelines such as for inference, where transformations may be applied to distinct columns in "family tree" sets with generations and branches of derivations. Included in the library of transformations are methods to extract structure from bounded categorical string sets by way of automated string parsing, in which comparisons between entries in the set of unique values are parsed to identify character subset overlaps which may be encoded by appended columns of boolean overlap detection activations or by replacing string entries with identified overlap partitions. Further string parsing options, which may also be applied to unbounded categoric sets, include extraction of numeric substring partitions from entries or search functions to identify presence of specified substring partitions. The aggregation of these methods into "family tree" sets of transformations are demonstrated for use to automatically extract structure from categoric string compositions in relation to the set of entries in a column, such as may be applied to prepare categoric string set encodings for machine learning without human intervention.
ViTree: Single-path Neural Tree for Step-wise Interpretable Fine-grained Visual Categorization
As computer vision continues to advance and finds widespread applications across various domains, the need for interpretability in deep learning models becomes paramount. Existing methods often resort to post-hoc techniques or prototypes to explain the decision-making process, which can be indirect and lack intrinsic illustration. In this research, we introduce ViTree, a novel approach for fine-grained visual categorization that combines the popular vision transformer as a feature extraction backbone with neural decision trees. By traversing the tree paths, ViTree effectively selects patches from transformer-processed features to highlight informative local regions, thereby refining representations in a step-wise manner. Unlike previous tree-based models that rely on soft distributions or ensembles of paths, ViTree selects a single tree path, offering a clearer and simpler decision-making process. This patch and path selectivity enhances model interpretability of ViTree, enabling better insights into the model's inner workings. Remarkably, extensive experimentation validates that this streamlined approach surpasses various strong competitors and achieves state-of-the-art performance while maintaining exceptional interpretability which is proved by multi-perspective methods. Code can be found at https://github.com/SJTU-DeepVisionLab/ViTree.
TreeGRPO: Tree-Advantage GRPO for Online RL Post-Training of Diffusion Models
Reinforcement learning (RL) post-training is crucial for aligning generative models with human preferences, but its prohibitive computational cost remains a major barrier to widespread adoption. We introduce TreeGRPO, a novel RL framework that dramatically improves training efficiency by recasting the denoising process as a search tree. From shared initial noise samples, TreeGRPO strategically branches to generate multiple candidate trajectories while efficiently reusing their common prefixes. This tree-structured approach delivers three key advantages: (1) High sample efficiency, achieving better performance under same training samples (2) Fine-grained credit assignment via reward backpropagation that computes step-specific advantages, overcoming the uniform credit assignment limitation of trajectory-based methods, and (3) Amortized computation where multi-child branching enables multiple policy updates per forward pass. Extensive experiments on both diffusion and flow-based models demonstrate that TreeGRPO achieves 2.4times faster training while establishing a superior Pareto frontier in the efficiency-reward trade-off space. Our method consistently outperforms GRPO baselines across multiple benchmarks and reward models, providing a scalable and effective pathway for RL-based visual generative model alignment. The project website is available at treegrpo.github.io.
Tree Prompting: Efficient Task Adaptation without Fine-Tuning
Prompting language models (LMs) is the main interface for applying them to new tasks. However, for smaller LMs, prompting provides low accuracy compared to gradient-based finetuning. Tree Prompting is an approach to prompting which builds a decision tree of prompts, linking multiple LM calls together to solve a task. At inference time, each call to the LM is determined by efficiently routing the outcome of the previous call using the tree. Experiments on classification datasets show that Tree Prompting improves accuracy over competing methods and is competitive with fine-tuning. We also show that variants of Tree Prompting allow inspection of a model's decision-making process.
Averaging Weights Leads to Wider Optima and Better Generalization
Deep neural networks are typically trained by optimizing a loss function with an SGD variant, in conjunction with a decaying learning rate, until convergence. We show that simple averaging of multiple points along the trajectory of SGD, with a cyclical or constant learning rate, leads to better generalization than conventional training. We also show that this Stochastic Weight Averaging (SWA) procedure finds much flatter solutions than SGD, and approximates the recent Fast Geometric Ensembling (FGE) approach with a single model. Using SWA we achieve notable improvement in test accuracy over conventional SGD training on a range of state-of-the-art residual networks, PyramidNets, DenseNets, and Shake-Shake networks on CIFAR-10, CIFAR-100, and ImageNet. In short, SWA is extremely easy to implement, improves generalization, and has almost no computational overhead.
Frame Averaging for Invariant and Equivariant Network Design
Many machine learning tasks involve learning functions that are known to be invariant or equivariant to certain symmetries of the input data. However, it is often challenging to design neural network architectures that respect these symmetries while being expressive and computationally efficient. For example, Euclidean motion invariant/equivariant graph or point cloud neural networks. We introduce Frame Averaging (FA), a general purpose and systematic framework for adapting known (backbone) architectures to become invariant or equivariant to new symmetry types. Our framework builds on the well known group averaging operator that guarantees invariance or equivariance but is intractable. In contrast, we observe that for many important classes of symmetries, this operator can be replaced with an averaging operator over a small subset of the group elements, called a frame. We show that averaging over a frame guarantees exact invariance or equivariance while often being much simpler to compute than averaging over the entire group. Furthermore, we prove that FA-based models have maximal expressive power in a broad setting and in general preserve the expressive power of their backbone architectures. Using frame averaging, we propose a new class of universal Graph Neural Networks (GNNs), universal Euclidean motion invariant point cloud networks, and Euclidean motion invariant Message Passing (MP) GNNs. We demonstrate the practical effectiveness of FA on several applications including point cloud normal estimation, beyond 2-WL graph separation, and n-body dynamics prediction, achieving state-of-the-art results in all of these benchmarks.
What are the best systems? New perspectives on NLP Benchmarking
In Machine Learning, a benchmark refers to an ensemble of datasets associated with one or multiple metrics together with a way to aggregate different systems performances. They are instrumental in (i) assessing the progress of new methods along different axes and (ii) selecting the best systems for practical use. This is particularly the case for NLP with the development of large pre-trained models (e.g. GPT, BERT) that are expected to generalize well on a variety of tasks. While the community mainly focused on developing new datasets and metrics, there has been little interest in the aggregation procedure, which is often reduced to a simple average over various performance measures. However, this procedure can be problematic when the metrics are on a different scale, which may lead to spurious conclusions. This paper proposes a new procedure to rank systems based on their performance across different tasks. Motivated by the social choice theory, the final system ordering is obtained through aggregating the rankings induced by each task and is theoretically grounded. We conduct extensive numerical experiments (on over 270k scores) to assess the soundness of our approach both on synthetic and real scores (e.g. GLUE, EXTREM, SEVAL, TAC, FLICKR). In particular, we show that our method yields different conclusions on state-of-the-art systems than the mean-aggregation procedure while being both more reliable and robust.
Model Merging by Uncertainty-Based Gradient Matching
Models trained on different datasets can be merged by a weighted-averaging of their parameters, but why does it work and when can it fail? Here, we connect the inaccuracy of weighted-averaging to mismatches in the gradients and propose a new uncertainty-based scheme to improve the performance by reducing the mismatch. The connection also reveals implicit assumptions in other schemes such as averaging, task arithmetic, and Fisher-weighted averaging. Our new method gives consistent improvements for large language models and vision transformers, both in terms of performance and robustness to hyperparameters.
Model Stock: All we need is just a few fine-tuned models
This paper introduces an efficient fine-tuning method for large pre-trained models, offering strong in-distribution (ID) and out-of-distribution (OOD) performance. Breaking away from traditional practices that need a multitude of fine-tuned models for averaging, our approach employs significantly fewer models to achieve final weights yet yield superior accuracy. Drawing from key insights in the weight space of fine-tuned weights, we uncover a strong link between the performance and proximity to the center of weight space. Based on this, we introduce a method that approximates a center-close weight using only two fine-tuned models, applicable during or after training. Our innovative layer-wise weight averaging technique surpasses state-of-the-art model methods such as Model Soup, utilizing only two fine-tuned models. This strategy can be aptly coined Model Stock, highlighting its reliance on selecting a minimal number of models to draw a more optimized-averaged model. We demonstrate the efficacy of Model Stock with fine-tuned models based upon pre-trained CLIP architectures, achieving remarkable performance on both ID and OOD tasks on the standard benchmarks, all while barely bringing extra computational demands. Our code and pre-trained models are available at https://github.com/naver-ai/model-stock.
Decision Tree Induction Through LLMs via Semantically-Aware Evolution
Decision trees are a crucial class of models offering robust predictive performance and inherent interpretability across various domains, including healthcare, finance, and logistics. However, current tree induction methods often face limitations such as suboptimal solutions from greedy methods or prohibitive computational costs and limited applicability of exact optimization approaches. To address these challenges, we propose an evolutionary optimization method for decision tree induction based on genetic programming (GP). Our key innovation is the integration of semantic priors and domain-specific knowledge about the search space into the optimization algorithm. To this end, we introduce LLEGO, a framework that incorporates semantic priors into genetic search operators through the use of Large Language Models (LLMs), thereby enhancing search efficiency and targeting regions of the search space that yield decision trees with superior generalization performance. This is operationalized through novel genetic operators that work with structured natural language prompts, effectively utilizing LLMs as conditional generative models and sources of semantic knowledge. Specifically, we introduce fitness-guided crossover to exploit high-performing regions, and diversity-guided mutation for efficient global exploration of the search space. These operators are controlled by corresponding hyperparameters that enable a more nuanced balance between exploration and exploitation across the search space. Empirically, we demonstrate across various benchmarks that LLEGO evolves superior-performing trees compared to existing tree induction methods, and exhibits significantly more efficient search performance compared to conventional GP approaches.
DenseFormer: Enhancing Information Flow in Transformers via Depth Weighted Averaging
The transformer architecture by Vaswani et al. (2017) is now ubiquitous across application domains, from natural language processing to speech processing and image understanding. We propose DenseFormer, a simple modification to the standard architecture that improves the perplexity of the model without increasing its size -- adding a few thousand parameters for large-scale models in the 100B parameters range. Our approach relies on an additional averaging step after each transformer block, which computes a weighted average of current and past representations -- we refer to this operation as Depth-Weighted-Average (DWA). The learned DWA weights exhibit coherent patterns of information flow, revealing the strong and structured reuse of activations from distant layers. Experiments demonstrate that DenseFormer is more data efficient, reaching the same perplexity of much deeper transformer models, and that for the same perplexity, these new models outperform transformer baselines in terms of memory efficiency and inference time.
Vanishing Variance Problem in Fully Decentralized Neural-Network Systems
Federated learning and gossip learning are emerging methodologies designed to mitigate data privacy concerns by retaining training data on client devices and exclusively sharing locally-trained machine learning (ML) models with others. The primary distinction between the two lies in their approach to model aggregation: federated learning employs a centralized parameter server, whereas gossip learning adopts a fully decentralized mechanism, enabling direct model exchanges among nodes. This decentralized nature often positions gossip learning as less efficient compared to federated learning. Both methodologies involve a critical step: computing a representation of received ML models and integrating this representation into the existing model. Conventionally, this representation is derived by averaging the received models, exemplified by the FedAVG algorithm. Our findings suggest that this averaging approach inherently introduces a potential delay in model convergence. We identify the underlying cause and refer to it as the "vanishing variance" problem, where averaging across uncorrelated ML models undermines the optimal variance established by the Xavier weight initialization. Unlike federated learning where the central server ensures model correlation, and unlike traditional gossip learning which circumvents this problem through model partitioning and sampling, our research introduces a variance-corrected model averaging algorithm. This novel algorithm preserves the optimal variance needed during model averaging, irrespective of network topology or non-IID data distributions. Our extensive simulation results demonstrate that our approach enables gossip learning to achieve convergence efficiency comparable to that of federated learning.
On the gracesize of trees
An n-vertex tree T is said to be graceful if there exists a bijective labelling φ:V(T)to {1,ldots,n} such that the edge-differences {|φ(x)-φ(y)| : xyin E(T)} are pairwise distinct. The longstanding graceful tree conjecture, posed by Rósa in the 1960s, asserts that every tree is graceful. The gracesize of an n-vertex tree T, denoted gs(T), is the maximum possible number of distinct edge-differences over all bijective labellings φ:V(T)to {1,ldots,n}. The graceful tree conjecture is therefore equivalent to the statement that gs(T)=n-1 for all n-vertex trees. We prove an asymptotic version of this conjecture by showing that for every varepsilon>0, there exists n_0 such that every tree on n>n_0 vertices satisfies gs(T)geqslant (1-varepsilon)n. In other words, every sufficiently large tree admits an almost graceful labelling.
Ensembling LLM-Induced Decision Trees for Explainable and Robust Error Detection
Error detection (ED), which aims to identify incorrect or inconsistent cell values in tabular data, is important for ensuring data quality. Recent state-of-the-art ED methods leverage the pre-trained knowledge and semantic capability embedded in large language models (LLMs) to directly label whether a cell is erroneous. However, this LLM-as-a-labeler pipeline (1) relies on the black box, implicit decision process, thus failing to provide explainability for the detection results, and (2) is highly sensitive to prompts, yielding inconsistent outputs due to inherent model stochasticity, therefore lacking robustness. To address these limitations, we propose an LLM-as-an-inducer framework that adopts LLM to induce the decision tree for ED (termed TreeED) and further ensembles multiple such trees for consensus detection (termed ForestED), thereby improving explainability and robustness. Specifically, based on prompts derived from data context, decision tree specifications and output requirements, TreeED queries the LLM to induce the decision tree skeleton, whose root-to-leaf decision paths specify the stepwise procedure for evaluating a given sample. Each tree contains three types of nodes: (1) rule nodes that perform simple validation checks (e.g., format or range), (2) Graph Neural Network (GNN) nodes that capture complex patterns (e.g., functional dependencies), and (3) leaf nodes that output the final decision types (error or clean). Furthermore, ForestED employs uncertainty-based sampling to obtain multiple row subsets, constructing a decision tree for each subset using TreeED. It then leverages an Expectation-Maximization-based algorithm that jointly estimates tree reliability and optimizes the consensus ED prediction. Extensive xperiments demonstrate that our methods are accurate, explainable and robust, achieving an average F1-score improvement of 16.1% over the best baseline.
XGBoost: A Scalable Tree Boosting System
Tree boosting is a highly effective and widely used machine learning method. In this paper, we describe a scalable end-to-end tree boosting system called XGBoost, which is used widely by data scientists to achieve state-of-the-art results on many machine learning challenges. We propose a novel sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning. More importantly, we provide insights on cache access patterns, data compression and sharding to build a scalable tree boosting system. By combining these insights, XGBoost scales beyond billions of examples using far fewer resources than existing systems.
TreeMeshGPT: Artistic Mesh Generation with Autoregressive Tree Sequencing
We introduce TreeMeshGPT, an autoregressive Transformer designed to generate high-quality artistic meshes aligned with input point clouds. Instead of the conventional next-token prediction in autoregressive Transformer, we propose a novel Autoregressive Tree Sequencing where the next input token is retrieved from a dynamically growing tree structure that is built upon the triangle adjacency of faces within the mesh. Our sequencing enables the mesh to extend locally from the last generated triangular face at each step, and therefore reduces training difficulty and improves mesh quality. Our approach represents each triangular face with two tokens, achieving a compression rate of approximately 22% compared to the naive face tokenization. This efficient tokenization enables our model to generate highly detailed artistic meshes with strong point cloud conditioning, surpassing previous methods in both capacity and fidelity. Furthermore, our method generates mesh with strong normal orientation constraints, minimizing flipped normals commonly encountered in previous methods. Our experiments show that TreeMeshGPT enhances the mesh generation quality with refined details and normal orientation consistency.
When is Tree Search Useful for LLM Planning? It Depends on the Discriminator
In this paper, we examine how large language models (LLMs) solve multi-step problems under a language agent framework with three components: a generator, a discriminator, and a planning method. We investigate the practical utility of two advanced planning methods, iterative correction and tree search. We present a comprehensive analysis of how discrimination accuracy affects the overall performance of agents when using these two methods or a simpler method, re-ranking. Experiments on two tasks, text-to-SQL parsing and mathematical reasoning, show that: (1) advanced planning methods demand discriminators with at least 90% accuracy to achieve significant improvements over re-ranking; (2) current LLMs' discrimination abilities have not met the needs of advanced planning methods to achieve such improvements; (3) with LLM-based discriminators, advanced planning methods may not adequately balance accuracy and efficiency. For example, compared to the other two methods, tree search is at least 10--20 times slower but leads to negligible performance gains, which hinders its real-world applications. Code and data will be released at https://github.com/OSU-NLP-Group/llm-planning-eval.
TimberTrek: Exploring and Curating Sparse Decision Trees with Interactive Visualization
Given thousands of equally accurate machine learning (ML) models, how can users choose among them? A recent ML technique enables domain experts and data scientists to generate a complete Rashomon set for sparse decision trees--a huge set of almost-optimal interpretable ML models. To help ML practitioners identify models with desirable properties from this Rashomon set, we develop TimberTrek, the first interactive visualization system that summarizes thousands of sparse decision trees at scale. Two usage scenarios highlight how TimberTrek can empower users to easily explore, compare, and curate models that align with their domain knowledge and values. Our open-source tool runs directly in users' computational notebooks and web browsers, lowering the barrier to creating more responsible ML models. TimberTrek is available at the following public demo link: https://poloclub.github.io/timbertrek.
Efficient Algorithms for Recognizing Weighted Tree-Adjoining Languages
The class of tree-adjoining languages can be characterized by various two-level formalisms, consisting of a context-free grammar (CFG) or pushdown automaton (PDA) controlling another CFG or PDA. These four formalisms are equivalent to tree-adjoining grammars (TAG), linear indexed grammars (LIG), pushdown-adjoining automata (PAA), and embedded pushdown automata (EPDA). We define semiring-weighted versions of the above two-level formalisms, and we design new algorithms for computing their stringsums (the weight of all derivations of a string) and allsums (the weight of all derivations). From these, we also immediately obtain stringsum and allsum algorithms for TAG, LIG, PAA, and EPDA. For LIG, our algorithm is more time-efficient by a factor of O(n|N|) (where n is the string length and |N| is the size of the nonterminal set) and more space-efficient by a factor of O(|Gamma|) (where |Gamma| is the size of the stack alphabet) than the algorithm of Vijay-Shanker and Weir (1989). For EPDA, our algorithm is both more space-efficient and time-efficient than the algorithm of Alonso et al. (2001) by factors of O(|Gamma|^2) and O(|Gamma|^3), respectively. Finally, we give the first PAA stringsum and allsum algorithms.
DAGs with NO TEARS: Continuous Optimization for Structure Learning
Estimating the structure of directed acyclic graphs (DAGs, also known as Bayesian networks) is a challenging problem since the search space of DAGs is combinatorial and scales superexponentially with the number of nodes. Existing approaches rely on various local heuristics for enforcing the acyclicity constraint. In this paper, we introduce a fundamentally different strategy: We formulate the structure learning problem as a purely continuous optimization problem over real matrices that avoids this combinatorial constraint entirely. This is achieved by a novel characterization of acyclicity that is not only smooth but also exact. The resulting problem can be efficiently solved by standard numerical algorithms, which also makes implementation effortless. The proposed method outperforms existing ones, without imposing any structural assumptions on the graph such as bounded treewidth or in-degree. Code implementing the proposed algorithm is open-source and publicly available at https://github.com/xunzheng/notears.
Nonlinear Advantage: Trained Networks Might Not Be As Complex as You Think
We perform an empirical study of the behaviour of deep networks when fully linearizing some of its feature channels through a sparsity prior on the overall number of nonlinear units in the network. In experiments on image classification and machine translation tasks, we investigate how much we can simplify the network function towards linearity before performance collapses. First, we observe a significant performance gap when reducing nonlinearity in the network function early on as opposed to late in training, in-line with recent observations on the time-evolution of the data-dependent NTK. Second, we find that after training, we are able to linearize a significant number of nonlinear units while maintaining a high performance, indicating that much of a network's expressivity remains unused but helps gradient descent in early stages of training. To characterize the depth of the resulting partially linearized network, we introduce a measure called average path length, representing the average number of active nonlinearities encountered along a path in the network graph. Under sparsity pressure, we find that the remaining nonlinear units organize into distinct structures, forming core-networks of near constant effective depth and width, which in turn depend on task difficulty.
ETS: Efficient Tree Search for Inference-Time Scaling
Test-time compute scaling has emerged as a new axis along which to improve model accuracy, where additional computation is used at inference time to allow the model to think longer for more challenging problems. One promising approach for test-time compute scaling is search against a process reward model, where a model generates multiple potential candidates at each step of the search, and these partial trajectories are then scored by a separate reward model in order to guide the search process. The diversity of trajectories in the tree search process affects the accuracy of the search, since increasing diversity promotes more exploration. However, this diversity comes at a cost, as divergent trajectories have less KV sharing, which means they consume more memory and slow down the search process. Previous search methods either do not perform sufficient exploration, or else explore diverse trajectories but have high latency. We address this challenge by proposing Efficient Tree Search (ETS), which promotes KV sharing by pruning redundant trajectories while maintaining necessary diverse trajectories. ETS incorporates a linear programming cost model to promote KV cache sharing by penalizing the number of nodes retained, while incorporating a semantic coverage term into the cost model to ensure that we retain trajectories which are semantically different. We demonstrate how ETS can achieve 1.8times reduction in average KV cache size during the search process, leading to 1.4times increased throughput relative to prior state-of-the-art methods, with minimal accuracy degradation and without requiring any custom kernel implementation. Code is available at: https://github.com/SqueezeAILab/ETS.
Free Lunch: Robust Cross-Lingual Transfer via Model Checkpoint Averaging
Massively multilingual language models have displayed strong performance in zero-shot (ZS-XLT) and few-shot (FS-XLT) cross-lingual transfer setups, where models fine-tuned on task data in a source language are transferred without any or with only a few annotated instances to the target language(s). However, current work typically overestimates model performance as fine-tuned models are frequently evaluated at model checkpoints that generalize best to validation instances in the target languages. This effectively violates the main assumptions of "true" ZS-XLT and FS-XLT. Such XLT setups require robust methods that do not depend on labeled target language data for validation and model selection. In this work, aiming to improve the robustness of "true" ZS-XLT and FS-XLT, we propose a simple and effective method that averages different checkpoints (i.e., model snapshots) during task fine-tuning. We conduct exhaustive ZS-XLT and FS-XLT experiments across higher-level semantic tasks (NLI, extractive QA) and lower-level token classification tasks (NER, POS). The results indicate that averaging model checkpoints yields systematic and consistent performance gains across diverse target languages in all tasks. Importantly, it simultaneously substantially desensitizes XLT to varying hyperparameter choices in the absence of target language validation. We also show that checkpoint averaging benefits performance when further combined with run averaging (i.e., averaging the parameters of models fine-tuned over independent runs).
GraphShaper: Geometry-aware Alignment for Improving Transfer Learning in Text-Attributed Graphs
Graph foundation models represent a transformative paradigm for learning transferable representations across diverse graph domains. Recent methods leverage large language models to unify graph and text modalities into a shared representation space using contrastive learning. However, systematic evaluations reveal significant performance degradation at structural boundaries where distinct topological patterns converge, with accuracy losses exceeding 20 percentage points. This issue arises from a key limitation: current methods assume all graph structures can be encoded within a single Euclidean space. In reality, tree structures require hyperbolic geometry to preserve hierarchical branching, while cyclic patterns depend on spherical geometry for closure properties. At structural boundaries, nodes experience conflicting geometric constraints that uniform encoding spaces cannot resolve. This raises a crucial challenge: Can alignment frameworks be designed to respect the intrinsic geometric diversity of graph structures? We introduce GraphShaper, a geometry-aware framework that enhances graph encoding through multi-geometric specialization. Our approach employs expert networks tailored to different geometric spaces, dynamically computing fusion weights to adaptively integrate geometric properties based on local structural characteristics. This adaptive fusion preserves structural integrity before alignment with text embeddings. Extensive experiments demonstrate that GraphShaper achieves 9.47\% accuracy improvements on citation networks and 7.63\% on social networks in zero-shot settings.
Seed-CTS: Unleashing the Power of Tree Search for Superior Performance in Competitive Coding Tasks
Competition-level code generation tasks pose significant challenges for current state-of-the-art large language models (LLMs). For example, on the LiveCodeBench-Hard dataset, models such as O1-Mini and O1-Preview achieve pass@1 rates of only 0.366 and 0.143, respectively. While tree search techniques have proven effective in domains like mathematics and general coding, their potential in competition-level code generation remains under-explored. In this work, we propose a novel token-level tree search method specifically designed for code generation. Leveraging Qwen2.5-Coder-32B-Instruct, our approach achieves a pass rate of 0.305 on LiveCodeBench-Hard, surpassing the pass@100 performance of GPT4o-0513 (0.245). Furthermore, by integrating Chain-of-Thought (CoT) prompting, we improve our method's performance to 0.351, approaching O1-Mini's pass@1 rate. To ensure reproducibility, we report the average number of generations required per problem by our tree search method on the test set. Our findings underscore the potential of tree search to significantly enhance performance on competition-level code generation tasks. This opens up new possibilities for large-scale synthesis of challenging code problems supervised fine-tuning (SFT) data, advancing competition-level code generation tasks.
OPT-Tree: Speculative Decoding with Adaptive Draft Tree Structure
Autoregressive language models demonstrate excellent performance in various scenarios. However, the inference efficiency is limited by its one-step-one-word generation mode, which has become a pressing problem recently as the models become increasingly larger. Speculative decoding employs a "draft and then verify" mechanism to allow multiple tokens to be generated in one step, realizing lossless acceleration. Existing methods mainly adopt fixed heuristic draft structures, which fail to adapt to different situations to maximize the acceptance length during verification. To alleviate this dilemma, we proposed OPT-Tree, an algorithm to construct adaptive and scalable draft trees. It searches the optimal tree structure that maximizes the mathematical expectation of the acceptance length in each decoding step. Experimental results reveal that OPT-Tree outperforms the existing draft structures and achieves a speed-up ratio of up to 3.2 compared with autoregressive decoding. If the draft model is powerful enough and the node budget is sufficient, it can generate more than ten tokens in a single step. Our code is available at https://github.com/Jikai0Wang/OPT-Tree.
The Rainbow Skip Graph: A Fault-Tolerant Constant-Degree P2P Relay Structure
We present a distributed data structure, which we call the rainbow skip graph. To our knowledge, this is the first peer-to-peer data structure that simultaneously achieves high fault tolerance, constant-sized nodes, and fast update and query times for ordered data. It is a non-trivial adaptation of the SkipNet/skip-graph structures of Harvey et al. and Aspnes and Shah, so as to provide fault-tolerance as these structures do, but to do so using constant-sized nodes, as in the family tree structure of Zatloukal and Harvey. It supports successor queries on a set of n items using O(log n) messages with high probability, an improvement over the expected O(log n) messages of the family tree.
Learnable Commutative Monoids for Graph Neural Networks
Graph neural networks (GNNs) have been shown to be highly sensitive to the choice of aggregation function. While summing over a node's neighbours can approximate any permutation-invariant function over discrete inputs, Cohen-Karlik et al. [2020] proved there are set-aggregation problems for which summing cannot generalise to unbounded inputs, proposing recurrent neural networks regularised towards permutation-invariance as a more expressive aggregator. We show that these results carry over to the graph domain: GNNs equipped with recurrent aggregators are competitive with state-of-the-art permutation-invariant aggregators, on both synthetic benchmarks and real-world problems. However, despite the benefits of recurrent aggregators, their O(V) depth makes them both difficult to parallelise and harder to train on large graphs. Inspired by the observation that a well-behaved aggregator for a GNN is a commutative monoid over its latent space, we propose a framework for constructing learnable, commutative, associative binary operators. And with this, we construct an aggregator of O(log V) depth, yielding exponential improvements for both parallelism and dependency length while achieving performance competitive with recurrent aggregators. Based on our empirical observations, our proposed learnable commutative monoid (LCM) aggregator represents a favourable tradeoff between efficient and expressive aggregators.
An Earth Mover's Distance Based Graph Distance Metric For Financial Statements
Quantifying the similarity between a group of companies has proven to be useful for several purposes, including company benchmarking, fraud detection, and searching for investment opportunities. This exercise can be done using a variety of data sources, such as company activity data and financial data. However, ledger account data is widely available and is standardized to a large extent. Such ledger accounts within a financial statement can be represented by means of a tree, i.e. a special type of graph, representing both the values of the ledger accounts and the relationships between them. Given their broad availability and rich information content, financial statements form a prime data source based on which company similarities or distances could be computed. In this paper, we present a graph distance metric that enables one to compute the similarity between the financial statements of two companies. We conduct a comprehensive experimental study using real-world financial data to demonstrate the usefulness of our proposed distance metric. The experimental results show promising results on a number of use cases. This method may be useful for investors looking for investment opportunities, government officials attempting to identify fraudulent companies, and accountants looking to benchmark a group of companies based on their financial statements.
Principal Neighbourhood Aggregation for Graph Nets
Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data. Recent work on their expressive power has focused on isomorphism tasks and countable feature spaces. We extend this theoretical framework to include continuous features - which occur regularly in real-world input domains and within the hidden layers of GNNs - and we demonstrate the requirement for multiple aggregation functions in this context. Accordingly, we propose Principal Neighbourhood Aggregation (PNA), a novel architecture combining multiple aggregators with degree-scalers (which generalize the sum aggregator). Finally, we compare the capacity of different models to capture and exploit the graph structure via a novel benchmark containing multiple tasks taken from classical graph theory, alongside existing benchmarks from real-world domains, all of which demonstrate the strength of our model. With this work, we hope to steer some of the GNN research towards new aggregation methods which we believe are essential in the search for powerful and robust models.
TreeFormer: a Semi-Supervised Transformer-based Framework for Tree Counting from a Single High Resolution Image
Automatic tree density estimation and counting using single aerial and satellite images is a challenging task in photogrammetry and remote sensing, yet has an important role in forest management. In this paper, we propose the first semisupervised transformer-based framework for tree counting which reduces the expensive tree annotations for remote sensing images. Our method, termed as TreeFormer, first develops a pyramid tree representation module based on transformer blocks to extract multi-scale features during the encoding stage. Contextual attention-based feature fusion and tree density regressor modules are further designed to utilize the robust features from the encoder to estimate tree density maps in the decoder. Moreover, we propose a pyramid learning strategy that includes local tree density consistency and local tree count ranking losses to utilize unlabeled images into the training process. Finally, the tree counter token is introduced to regulate the network by computing the global tree counts for both labeled and unlabeled images. Our model was evaluated on two benchmark tree counting datasets, Jiangsu, and Yosemite, as well as a new dataset, KCL-London, created by ourselves. Our TreeFormer outperforms the state of the art semi-supervised methods under the same setting and exceeds the fully-supervised methods using the same number of labeled images. The codes and datasets are available at https://github.com/HAAClassic/TreeFormer.
A New Rejection Sampling Approach to k-means++ With Improved Trade-Offs
The k-means++ seeding algorithm (Arthur & Vassilvitskii, 2007) is widely used in practice for the k-means clustering problem where the goal is to cluster a dataset X subset R ^d into k clusters. The popularity of this algorithm is due to its simplicity and provable guarantee of being O(log k) competitive with the optimal solution in expectation. However, its running time is O(|X|kd), making it expensive for large datasets. In this work, we present a simple and effective rejection sampling based approach for speeding up k-means++. Our first method runs in time O(nnz (X) + beta k^2d) while still being O(log k ) competitive in expectation. Here, beta is a parameter which is the ratio of the variance of the dataset to the optimal k-means cost in expectation and O hides logarithmic factors in k and |X|. Our second method presents a new trade-off between computational cost and solution quality. It incurs an additional scale-invariant factor of k^{-Omega( m/beta)} Var (X) in addition to the O(log k) guarantee of k-means++ improving upon a result of (Bachem et al, 2016a) who get an additional factor of m^{-1}Var(X) while still running in time O(nnz(X) + mk^2d). We perform extensive empirical evaluations to validate our theoretical results and to show the effectiveness of our approach on real datasets.
Non-Sequential Graph Script Induction via Multimedia Grounding
Online resources such as WikiHow compile a wide range of scripts for performing everyday tasks, which can assist models in learning to reason about procedures. However, the scripts are always presented in a linear manner, which does not reflect the flexibility displayed by people executing tasks in real life. For example, in the CrossTask Dataset, 64.5% of consecutive step pairs are also observed in the reverse order, suggesting their ordering is not fixed. In addition, each step has an average of 2.56 frequent next steps, demonstrating "branching". In this paper, we propose the new challenging task of non-sequential graph script induction, aiming to capture optional and interchangeable steps in procedural planning. To automate the induction of such graph scripts for given tasks, we propose to take advantage of loosely aligned videos of people performing the tasks. In particular, we design a multimodal framework to ground procedural videos to WikiHow textual steps and thus transform each video into an observed step path on the latent ground truth graph script. This key transformation enables us to train a script knowledge model capable of both generating explicit graph scripts for learnt tasks and predicting future steps given a partial step sequence. Our best model outperforms the strongest pure text/vision baselines by 17.52% absolute gains on F1@3 for next step prediction and 13.8% absolute gains on Acc@1 for partial sequence completion. Human evaluation shows our model outperforming the WikiHow linear baseline by 48.76% absolute gains in capturing sequential and non-sequential step relationships.
M2fNet: Multi-modal Forest Monitoring Network on Large-scale Virtual Dataset
Forest monitoring and education are key to forest protection, education and management, which is an effective way to measure the progress of a country's forest and climate commitments. Due to the lack of a large-scale wild forest monitoring benchmark, the common practice is to train the model on a common outdoor benchmark (e.g., KITTI) and evaluate it on real forest datasets (e.g., CanaTree100). However, there is a large domain gap in this setting, which makes the evaluation and deployment difficult. In this paper, we propose a new photorealistic virtual forest dataset and a multimodal transformer-based algorithm for tree detection and instance segmentation. To the best of our knowledge, it is the first time that a multimodal detection and segmentation algorithm is applied to large-scale forest scenes. We believe that the proposed dataset and method will inspire the simulation, computer vision, education, and forestry communities towards a more comprehensive multi-modal understanding.
LANTERN++: Enhanced Relaxed Speculative Decoding with Static Tree Drafting for Visual Auto-regressive Models
Speculative decoding has been widely used to accelerate autoregressive (AR) text generation. However, its effectiveness in visual AR models remains limited due to token selection ambiguity, where multiple tokens receive similarly low probabilities, reducing acceptance rates. While dynamic tree drafting has been proposed to improve speculative decoding, we show that it fails to mitigate token selection ambiguity, resulting in shallow draft trees and suboptimal acceleration. To address this, we introduce LANTERN++, a novel framework that integrates static tree drafting with a relaxed acceptance condition, allowing drafts to be selected independently of low-confidence predictions. This enables deeper accepted sequences, improving decoding efficiency while preserving image quality. Extensive experiments on state-of-the-art visual AR models demonstrate that LANTERN++ significantly accelerates inference, achieving up to times 2.56 speedup over standard AR decoding while maintaining high image quality.
A Public Image Database for Benchmark of Plant Seedling Classification Algorithms
A database of images of approximately 960 unique plants belonging to 12 species at several growth stages is made publicly available. It comprises annotated RGB images with a physical resolution of roughly 10 pixels per mm. To standardise the evaluation of classification results obtained with the database, a benchmark based on f_{1} scores is proposed. The dataset is available at https://vision.eng.au.dk/plant-seedlings-dataset
Scaling Laws and Compute-Optimal Training Beyond Fixed Training Durations
Scale has become a main ingredient in obtaining strong machine learning models. As a result, understanding a model's scaling properties is key to effectively designing both the right training setup as well as future generations of architectures. In this work, we argue that scale and training research has been needlessly complex due to reliance on the cosine schedule, which prevents training across different lengths for the same model size. We investigate the training behavior of a direct alternative - constant learning rate and cooldowns - and find that it scales predictably and reliably similar to cosine. Additionally, we show that stochastic weight averaging yields improved performance along the training trajectory, without additional training costs, across different scales. Importantly, with these findings we demonstrate that scaling experiments can be performed with significantly reduced compute and GPU hours by utilizing fewer but reusable training runs.
Everybody Prune Now: Structured Pruning of LLMs with only Forward Passes
Given the generational gap in available hardware between lay practitioners and the most endowed institutions, LLMs are becoming increasingly inaccessible as they grow in size. Whilst many approaches have been proposed to compress LLMs to make their resource consumption manageable, these methods themselves tend to be resource intensive, putting them out of the reach of the very user groups they target. In this work, we explore the problem of structured pruning of LLMs using only forward passes. We seek to empower practitioners to prune models so large that their available hardware has just enough memory to run inference. We develop Bonsai, a gradient-free, perturbative pruning method capable of delivering small, fast, and accurate pruned models. We observe that Bonsai outputs pruned models that (i) outperform those generated by more expensive gradient-based structured pruning methods, and (ii) are twice as fast (with comparable accuracy) as those generated by semi-structured pruning methods requiring comparable resources as Bonsai. We also leverage Bonsai to produce a new sub-2B model using a single A6000 that yields state-of-the-art performance on 4/6 tasks on the Huggingface Open LLM leaderboard.
A Spatio-Temporal Machine Learning Model for Mortgage Credit Risk: Default Probabilities and Loan Portfolios
We introduce a novel machine learning model for credit risk by combining tree-boosting with a latent spatio-temporal Gaussian process model accounting for frailty correlation. This allows for modeling non-linearities and interactions among predictor variables in a flexible data-driven manner and for accounting for spatio-temporal variation that is not explained by observable predictor variables. We also show how estimation and prediction can be done in a computationally efficient manner. In an application to a large U.S. mortgage credit risk data set, we find that both predictive default probabilities for individual loans and predictive loan portfolio loss distributions obtained with our novel approach are more accurate compared to conventional independent linear hazard models and also linear spatio-temporal models. Using interpretability tools for machine learning models, we find that the likely reasons for this outperformance are strong interaction and non-linear effects in the predictor variables and the presence of large spatio-temporal frailty effects.
Rethinking the Value of Network Pruning
Network pruning is widely used for reducing the heavy inference cost of deep models in low-resource settings. A typical pruning algorithm is a three-stage pipeline, i.e., training (a large model), pruning and fine-tuning. During pruning, according to a certain criterion, redundant weights are pruned and important weights are kept to best preserve the accuracy. In this work, we make several surprising observations which contradict common beliefs. For all state-of-the-art structured pruning algorithms we examined, fine-tuning a pruned model only gives comparable or worse performance than training that model with randomly initialized weights. For pruning algorithms which assume a predefined target network architecture, one can get rid of the full pipeline and directly train the target network from scratch. Our observations are consistent for multiple network architectures, datasets, and tasks, which imply that: 1) training a large, over-parameterized model is often not necessary to obtain an efficient final model, 2) learned "important" weights of the large model are typically not useful for the small pruned model, 3) the pruned architecture itself, rather than a set of inherited "important" weights, is more crucial to the efficiency in the final model, which suggests that in some cases pruning can be useful as an architecture search paradigm. Our results suggest the need for more careful baseline evaluations in future research on structured pruning methods. We also compare with the "Lottery Ticket Hypothesis" (Frankle & Carbin 2019), and find that with optimal learning rate, the "winning ticket" initialization as used in Frankle & Carbin (2019) does not bring improvement over random initialization.
Expertise Trees Resolve Knowledge Limitations in Collective Decision-Making
Experts advising decision-makers are likely to display expertise which varies as a function of the problem instance. In practice, this may lead to sub-optimal or discriminatory decisions against minority cases. In this work we model such changes in depth and breadth of knowledge as a partitioning of the problem space into regions of differing expertise. We provide here new algorithms that explicitly consider and adapt to the relationship between problem instances and experts' knowledge. We first propose and highlight the drawbacks of a naive approach based on nearest neighbor queries. To address these drawbacks we then introduce a novel algorithm - expertise trees - that constructs decision trees enabling the learner to select appropriate models. We provide theoretical insights and empirically validate the improved performance of our novel approach on a range of problems for which existing methods proved to be inadequate.
Neural Networks are Decision Trees
In this manuscript, we show that any neural network with any activation function can be represented as a decision tree. The representation is equivalence and not an approximation, thus keeping the accuracy of the neural network exactly as is. We believe that this work provides better understanding of neural networks and paves the way to tackle their black-box nature. We share equivalent trees of some neural networks and show that besides providing interpretability, tree representation can also achieve some computational advantages for small networks. The analysis holds both for fully connected and convolutional networks, which may or may not also include skip connections and/or normalizations.
LiteSearch: Efficacious Tree Search for LLM
Recent research suggests that tree search algorithms (e.g. Monte Carlo Tree Search) can dramatically boost LLM performance on complex mathematical reasoning tasks. However, they often require more than 10 times the computational resources of greedy decoding due to wasteful search strategies, making them difficult to be deployed in practical applications. This study introduces a novel guided tree search algorithm with dynamic node selection and node-level exploration budget (maximum number of children) calculation to tackle this issue. By considering the search progress towards the final answer (history) and the guidance from a value network (future) trained without any step-wise annotations, our algorithm iteratively selects the most promising tree node before expanding it within the boundaries of the allocated computational budget. Experiments conducted on the GSM8K and TabMWP datasets demonstrate that our approach not only offers competitive performance but also enjoys significantly lower computational costs compared to baseline methods.
How predictable is language model benchmark performance?
We investigate large language model performance across five orders of magnitude of compute scaling in eleven recent model architectures. We show that average benchmark performance, aggregating over many individual tasks and evaluations as in the commonly-used BIG-Bench dataset, is decently predictable as a function of training compute scale. Specifically, when extrapolating BIG-Bench Hard performance across one order of magnitude in compute, we observe average absolute errors of 6 percentage points (pp). By contrast, extrapolation for individual BIG-Bench tasks across an order of magnitude in compute yields higher average errors of 18pp. Nonetheless, individual task performance remains significantly more predictable than chance. Overall, our work suggests compute scaling provides a promising basis to forecast AI capabilities in diverse benchmarks, though predicting performance in specific tasks poses challenges.
Merging Models with Fisher-Weighted Averaging
Averaging the parameters of models that have the same architecture and initialization can provide a means of combining their respective capabilities. In this paper, we take the perspective that this "merging" operation can be seen as choosing parameters that approximately maximize the joint likelihood of the posteriors of the models' parameters. Computing a simple average of the models' parameters therefore corresponds to making an isotropic Gaussian approximation to their posteriors. We develop an alternative merging procedure based on the Laplace approximation where we approximate each model's posterior as a Gaussian distribution whose precision matrix corresponds to its Fisher information. We first show that our "Fisher merging" technique provides a performance boost in settings where simple parameter averaging is currently used -- specifically, robust fine-tuning and model ensembling. Then, we compare merging to standard gradient-based transfer learning and demonstrate that merging enables a fundamentally different method for transferring capabilities across models. Specifically, we show that Fisher merging is competitive with gradient-based transfer learning approaches (while being significantly cheaper) in intermediate-task training and domain-adaptive pre-training. We also show that our merging procedure makes it possible to combine models in previously unexplored ways. We release our code to facilitate future research into methods for merging models.
3D Reconstruction and Information Fusion between Dormant and Canopy Seasons in Commercial Orchards Using Deep Learning and Fast GICP
In orchard automation, dense foliage during the canopy season severely occludes tree structures, minimizing visibility to various canopy parts such as trunks and branches, which limits the ability of a machine vision system. However, canopy structure is more open and visible during the dormant season when trees are defoliated. In this work, we present an information fusion framework that integrates multi-seasonal structural data to support robotic and automated crop load management during the entire growing season. The framework combines high-resolution RGB-D imagery from both dormant and canopy periods using YOLOv9-Seg for instance segmentation, Kinect Fusion for 3D reconstruction, and Fast Generalized Iterative Closest Point (Fast GICP) for model alignment. Segmentation outputs from YOLOv9-Seg were used to extract depth-informed masks, which enabled accurate 3D point cloud reconstruction via Kinect Fusion; these reconstructed models from each season were subsequently aligned using Fast GICP to achieve spatially coherent multi-season fusion. The YOLOv9-Seg model, trained on manually annotated images, achieved a mean squared error (MSE) of 0.0047 and segmentation mAP@50 scores up to 0.78 for trunks in dormant season dataset. Kinect Fusion enabled accurate reconstruction of tree geometry, validated with field measurements resulting in root mean square errors (RMSE) of 5.23 mm for trunk diameter, 4.50 mm for branch diameter, and 13.72 mm for branch spacing. Fast GICP achieved precise cross-seasonal registration with a minimum fitness score of 0.00197, allowing integrated, comprehensive tree structure modeling despite heavy occlusions during the growing season. This fused structural representation enables robotic systems to access otherwise obscured architectural information, improving the precision of pruning, thinning, and other automated orchard operations.
Convergence of local times of stochastic processes associated with resistance forms
In this paper, it is shown that if a sequence of resistance metric spaces equipped with measures converges with respect to the local Gromov-Hausdorff-vague topology, and certain non-explosion and metric-entropy conditions are satisfied, then the associated stochastic processes and their local times also converge. The metric-entropy condition can be checked by applying volume estimates of balls. Whilst similar results have been proved previously, the approach of this article is more widely applicable. Indeed, we recover various known conclusions for scaling limits of some deterministic self-similar fractal graphs, critical Galton-Watson trees, the critical Erdos-R\'enyi random graph and the configuration model (in the latter two cases, we prove for the first time the convergence of the models with respect to the resistance metric and also, for the configuration model, we overcome an error in the existing proof of local time convergence). Moreover, we derive new ones for scaling limits of uniform spanning trees and random recursive fractals. The metric-entropy condition also implies convergence of associated Gaussian processes.
Deep Combinatorial Aggregation
Neural networks are known to produce poor uncertainty estimations, and a variety of approaches have been proposed to remedy this issue. This includes deep ensemble, a simple and effective method that achieves state-of-the-art results for uncertainty-aware learning tasks. In this work, we explore a combinatorial generalization of deep ensemble called deep combinatorial aggregation (DCA). DCA creates multiple instances of network components and aggregates their combinations to produce diversified model proposals and predictions. DCA components can be defined at different levels of granularity. And we discovered that coarse-grain DCAs can outperform deep ensemble for uncertainty-aware learning both in terms of predictive performance and uncertainty estimation. For fine-grain DCAs, we discover that an average parameterization approach named deep combinatorial weight averaging (DCWA) can improve the baseline training. It is on par with stochastic weight averaging (SWA) but does not require any custom training schedule or adaptation of BatchNorm layers. Furthermore, we propose a consistency enforcing loss that helps the training of DCWA and modelwise DCA. We experiment on in-domain, distributional shift, and out-of-distribution image classification tasks, and empirically confirm the effectiveness of DCWA and DCA approaches.
RigAnything: Template-Free Autoregressive Rigging for Diverse 3D Assets
We present RigAnything, a novel autoregressive transformer-based model, which makes 3D assets rig-ready by probabilistically generating joints, skeleton topologies, and assigning skinning weights in a template-free manner. Unlike most existing auto-rigging methods, which rely on predefined skeleton template and are limited to specific categories like humanoid, RigAnything approaches the rigging problem in an autoregressive manner, iteratively predicting the next joint based on the global input shape and the previous prediction. While autoregressive models are typically used to generate sequential data, RigAnything extends their application to effectively learn and represent skeletons, which are inherently tree structures. To achieve this, we organize the joints in a breadth-first search (BFS) order, enabling the skeleton to be defined as a sequence of 3D locations and the parent index. Furthermore, our model improves the accuracy of position prediction by leveraging diffusion modeling, ensuring precise and consistent placement of joints within the hierarchy. This formulation allows the autoregressive model to efficiently capture both spatial and hierarchical relationships within the skeleton. Trained end-to-end on both RigNet and Objaverse datasets, RigAnything demonstrates state-of-the-art performance across diverse object types, including humanoids, quadrupeds, marine creatures, insects, and many more, surpassing prior methods in quality, robustness, generalizability, and efficiency. Please check our website for more details: https://www.liuisabella.com/RigAnything.
TimberVision: A Multi-Task Dataset and Framework for Log-Component Segmentation and Tracking in Autonomous Forestry Operations
Timber represents an increasingly valuable and versatile resource. However, forestry operations such as harvesting, handling and measuring logs still require substantial human labor in remote environments posing significant safety risks. Progressively automating these tasks has the potential of increasing their efficiency as well as safety, but requires an accurate detection of individual logs as well as live trees and their context. Although initial approaches have been proposed for this challenging application domain, specialized data and algorithms are still too scarce to develop robust solutions. To mitigate this gap, we introduce the TimberVision dataset, consisting of more than 2k annotated RGB images containing a total of 51k trunk components including cut and lateral surfaces, thereby surpassing any existing dataset in this domain in terms of both quantity and detail by a large margin. Based on this data, we conduct a series of ablation experiments for oriented object detection and instance segmentation and evaluate the influence of multiple scene parameters on model performance. We introduce a generic framework to fuse the components detected by our models for both tasks into unified trunk representations. Furthermore, we automatically derive geometric properties and apply multi-object tracking to further enhance robustness. Our detection and tracking approach provides highly descriptive and accurate trunk representations solely from RGB image data, even under challenging environmental conditions. Our solution is suitable for a wide range of application scenarios and can be readily combined with other sensor modalities.
Learning to Branch for Multi-Task Learning
Training multiple tasks jointly in one deep network yields reduced latency during inference and better performance over the single-task counterpart by sharing certain layers of a network. However, over-sharing a network could erroneously enforce over-generalization, causing negative knowledge transfer across tasks. Prior works rely on human intuition or pre-computed task relatedness scores for ad hoc branching structures. They provide sub-optimal end results and often require huge efforts for the trial-and-error process. In this work, we present an automated multi-task learning algorithm that learns where to share or branch within a network, designing an effective network topology that is directly optimized for multiple objectives across tasks. Specifically, we propose a novel tree-structured design space that casts a tree branching operation as a gumbel-softmax sampling procedure. This enables differentiable network splitting that is end-to-end trainable. We validate the proposed method on controlled synthetic data, CelebA, and Taskonomy.
CFT-RAG: An Entity Tree Based Retrieval Augmented Generation Algorithm With Cuckoo Filter
Although retrieval-augmented generation(RAG) significantly improves generation quality by retrieving external knowledge bases and integrating generated content, it faces computational efficiency bottlenecks, particularly in knowledge retrieval tasks involving hierarchical structures for Tree-RAG. This paper proposes a Tree-RAG acceleration method based on the improved Cuckoo Filter, which optimizes entity localization during the retrieval process to achieve significant performance improvements. Tree-RAG effectively organizes entities through the introduction of a hierarchical tree structure, while the Cuckoo Filter serves as an efficient data structure that supports rapid membership queries and dynamic updates. The experiment results demonstrate that our method is much faster than naive Tree-RAG while maintaining high levels of generative quality. When the number of trees is large, our method is hundreds of times faster than naive Tree-RAG. Our work is available at https://github.com/TUPYP7180/CFT-RAG-2025.
Tree Search for LLM Agent Reinforcement Learning
Recent advances in reinforcement learning (RL) have significantly enhanced the agentic capabilities of large language models (LLMs). In long-term and multi-turn agent tasks, existing approaches driven solely by outcome rewards often suffer from the problem of sparse supervision. To address the challenge, we propose Tree-based Group Relative Policy Optimization (Tree-GRPO), a grouped agent RL method based on tree search, where each tree node represents the complete agent interaction step. By sharing common prefixes, the tree search sampling increases the number of rollouts achievable within a fixed budget of tokens or tool calls. Moreover, we find that the tree-structured trajectory naturally allows the construction of step-wise process supervised signals even using only the outcome reward. Based on this, Tree-GRPO estimates the grouped relative advantages both on intra-tree and inter-tree levels. Through theoretical analysis, we demonstrate that the objective of intra-tree level group relative policy optimization is equivalent to that of step-level direct preference learning. Experiments across 11 datasets and 3 types of QA tasks demonstrate the superiority of the proposed tree-based RL over the chain-based RL method.
SWAMP: Sparse Weight Averaging with Multiple Particles for Iterative Magnitude Pruning
Given the ever-increasing size of modern neural networks, the significance of sparse architectures has surged due to their accelerated inference speeds and minimal memory demands. When it comes to global pruning techniques, Iterative Magnitude Pruning (IMP) still stands as a state-of-the-art algorithm despite its simple nature, particularly in extremely sparse regimes. In light of the recent finding that the two successive matching IMP solutions are linearly connected without a loss barrier, we propose Sparse Weight Averaging with Multiple Particles (SWAMP), a straightforward modification of IMP that achieves performance comparable to an ensemble of two IMP solutions. For every iteration, we concurrently train multiple sparse models, referred to as particles, using different batch orders yet the same matching ticket, and then weight average such models to produce a single mask. We demonstrate that our method consistently outperforms existing baselines across different sparsities through extensive experiments on various data and neural network structures.
ReTreever: Tree-based Coarse-to-Fine Representations for Retrieval
Document retrieval is a core component of question-answering systems, as it enables conditioning answer generation on new and large-scale corpora. While effective, the standard practice of encoding documents into high-dimensional embeddings for similarity search entails large memory and compute footprints, and also makes it hard to inspect the inner workings of the system. In this paper, we propose a tree-based method for organizing and representing reference documents at various granular levels, which offers the flexibility to balance cost and utility, and eases the inspection of the corpus content and retrieval operations. Our method, called ReTreever, jointly learns a routing function per internal node of a binary tree such that query and reference documents are assigned to similar tree branches, hence directly optimizing for retrieval performance. Our evaluations show that ReTreever generally preserves full representation accuracy. Its hierarchical structure further provides strong coarse representations and enhances transparency by indirectly learning meaningful semantic groupings. Among hierarchical retrieval methods, ReTreever achieves the best retrieval accuracy at the lowest latency, proving that this family of techniques can be viable in practical applications.
Dynamic Depth Decoding: Faster Speculative Decoding for LLMs
The acceleration of Large Language Models (LLMs) with speculative decoding provides a significant runtime improvement without any loss of accuracy. Currently, EAGLE-2 is the state-of-the-art speculative decoding method, improving on EAGLE with a dynamic draft tree. We introduce Dynamic Depth Decoding (DDD), which optimises EAGLE-2's tree drafting method using a dynamic depth. This extends the average speedup that EAGLE-2 achieves over EAGLE by 44%, giving DDD an average speedup of 3.16x.
Measures of the Capital Network of the U.S. Economy
About two million U.S. corporations and partnerships are linked to each other and human investors by about 15 million owner-subsidiary links. Comparable social networks such as corporate board memberships and socially-built systems such as the network of Internet links are "small worlds," meaning a network with a small diameter and link densities with a power-law distribution, but these properties had not yet been measured for the business entity network. This article shows that both inbound links and outbound links display a power-law distribution with a coefficient of concentration estimable to within a generally narrow confidence interval, overall, for subnetworks including only business entities, only for the great connected component of the network, and in subnetworks with edges associated with certain industries, for all years 2009-2021. In contrast to other networks with power-law distributed link densities, the network is mostly a tree, and has a diameter an order of magnitude larger than a small-world network with the same link distribution. The regularity of the power-law distribution indicates that its coefficient can be used as a new, well-defined macroeconomic metric for the concentration of capital flows in an economy. Economists might use it as a new measure of market concentration which is more comprehensive than measures based only on the few biggest firms. Comparing capital link concentrations across countries would facilitate modeling the relationship between business network characteristics and other macroeconomic indicators.
Semantic Tree Inference on Text Corpa using a Nested Density Approach together with Large Language Model Embeddings
Semantic text classification has undergone significant advances in recent years due to the rise of large language models (LLMs) and their high dimensional embeddings. While LLM-embeddings are frequently used to store and retrieve text by semantic similarity in vector databases, the global structure semantic relationships in text corpora often remains opaque. Herein we propose a nested density clustering approach, to infer hierarchical trees of semantically related texts. The method starts by identifying texts of strong semantic similarity as it searches for dense clusters in LLM embedding space. As the density criterion is gradually relaxed, these dense clusters merge into more diffuse clusters, until the whole dataset is represented by a single cluster -- the root of the tree. By embedding dense clusters into increasingly diffuse ones, we construct a tree structure that captures hierarchical semantic relationships among texts. We outline how this approach can be used to classify textual data for abstracts of scientific abstracts as a case study. This enables the data-driven discovery research areas and their subfields without predefined categories. To evaluate the general applicability of the method, we further apply it to established benchmark datasets such as the 20 Newsgroups and IMDB 50k Movie Reviews, demonstrating its robustness across domains. Finally we discuss possible applications on scientometrics, topic evolution, highlighting how nested density trees can reveal semantic structure and evolution in textual datasets.
Model Fusion via Optimal Transport
Combining different models is a widely used paradigm in machine learning applications. While the most common approach is to form an ensemble of models and average their individual predictions, this approach is often rendered infeasible by given resource constraints in terms of memory and computation, which grow linearly with the number of models. We present a layer-wise model fusion algorithm for neural networks that utilizes optimal transport to (soft-) align neurons across the models before averaging their associated parameters. We show that this can successfully yield "one-shot" knowledge transfer (i.e, without requiring any retraining) between neural networks trained on heterogeneous non-i.i.d. data. In both i.i.d. and non-i.i.d. settings , we illustrate that our approach significantly outperforms vanilla averaging, as well as how it can serve as an efficient replacement for the ensemble with moderate fine-tuning, for standard convolutional networks (like VGG11), residual networks (like ResNet18), and multi-layer perceptrons on CIFAR10, CIFAR100, and MNIST. Finally, our approach also provides a principled way to combine the parameters of neural networks with different widths, and we explore its application for model compression. The code is available at the following link, https://github.com/sidak/otfusion.
Mycorrhiza: Genotype Assignment usingPhylogenetic Networks
Motivation The genotype assignment problem consists of predicting, from the genotype of an individual, which of a known set of populations it originated from. The problem arises in a variety of contexts, including wildlife forensics, invasive species detection and biodiversity monitoring. Existing approaches perform well under ideal conditions but are sensitive to a variety of common violations of the assumptions they rely on. Results In this article, we introduce Mycorrhiza, a machine learning approach for the genotype assignment problem. Our algorithm makes use of phylogenetic networks to engineer features that encode the evolutionary relationships among samples. Those features are then used as input to a Random Forests classifier. The classification accuracy was assessed on multiple published empirical SNP, microsatellite or consensus sequence datasets with wide ranges of size, geographical distribution and population structure and on simulated datasets. It compared favorably against widely used assessment tests or mixture analysis methods such as STRUCTURE and Admixture, and against another machine-learning based approach using principal component analysis for dimensionality reduction. Mycorrhiza yields particularly significant gains on datasets with a large average fixation index (FST) or deviation from the Hardy-Weinberg equilibrium. Moreover, the phylogenetic network approach estimates mixture proportions with good accuracy.
ADA-Net: Attention-Guided Domain Adaptation Network with Contrastive Learning for Standing Dead Tree Segmentation Using Aerial Imagery
Information on standing dead trees is important for understanding forest ecosystem functioning and resilience but has been lacking over large geographic regions. Climate change has caused large-scale tree mortality events that can remain undetected due to limited data. In this study, we propose a novel method for segmenting standing dead trees using aerial multispectral orthoimages. Because access to annotated datasets has been a significant problem in forest remote sensing due to the need for forest expertise, we introduce a method for domain transfer by leveraging domain adaptation to learn a transformation from a source domain X to target domain Y. In this Image-to-Image translation task, we aim to utilize available annotations in the target domain by pre-training a segmentation network. When images from a new study site without annotations are introduced (source domain X), these images are transformed into the target domain. Then, transfer learning is applied by inferring the pre-trained network on domain-adapted images. In addition to investigating the feasibility of current domain adaptation approaches for this objective, we propose a novel approach called the Attention-guided Domain Adaptation Network (ADA-Net) with enhanced contrastive learning. Accordingly, the ADA-Net approach provides new state-of-the-art domain adaptation performance levels outperforming existing approaches. We have evaluated the proposed approach using two datasets from Finland and the US. The USA images are converted to the Finland domain, and we show that the synthetic USA2Finland dataset exhibits similar characteristics to the Finland domain images. The software implementation is shared at https://github.com/meteahishali/ADA-Net. The data is publicly available at https://www.kaggle.com/datasets/meteahishali/aerial-imagery-for-standing-dead-tree-segmentation.
Fast Online Node Labeling for Very Large Graphs
This paper studies the online node classification problem under a transductive learning setting. Current methods either invert a graph kernel matrix with O(n^3) runtime and O(n^2) space complexity or sample a large volume of random spanning trees, thus are difficult to scale to large graphs. In this work, we propose an improvement based on the online relaxation technique introduced by a series of works (Rakhlin et al.,2012; Rakhlin and Sridharan, 2015; 2017). We first prove an effective regret O(n^{1+gamma}) when suitable parameterized graph kernels are chosen, then propose an approximate algorithm FastONL enjoying O(kn^{1+gamma}) regret based on this relaxation. The key of FastONL is a generalized local push method that effectively approximates inverse matrix columns and applies to a series of popular kernels. Furthermore, the per-prediction cost is O(vol({S})log 1/epsilon) locally dependent on the graph with linear memory cost. Experiments show that our scalable method enjoys a better tradeoff between local and global consistency.
DiLoCo: Distributed Low-Communication Training of Language Models
Large language models (LLM) have become a critical component in many applications of machine learning. However, standard approaches to training LLM require a large number of tightly interconnected accelerators, with devices exchanging gradients and other intermediate states at each optimization step. While it is difficult to build and maintain a single computing cluster hosting many accelerators, it might be easier to find several computing clusters each hosting a smaller number of devices. In this work, we propose a distributed optimization algorithm, Distributed Low-Communication (DiLoCo), that enables training of language models on islands of devices that are poorly connected. The approach is a variant of federated averaging, where the number of inner steps is large, the inner optimizer is AdamW, and the outer optimizer is Nesterov momentum. On the widely used C4 dataset, we show that DiLoCo on 8 workers performs as well as fully synchronous optimization while communicating 500 times less. DiLoCo exhibits great robustness to the data distribution of each worker. It is also robust to resources becoming unavailable over time, and vice versa, it can seamlessly leverage resources that become available during training.
Neural Prototype Trees for Interpretable Fine-grained Image Recognition
Prototype-based methods use interpretable representations to address the black-box nature of deep learning models, in contrast to post-hoc explanation methods that only approximate such models. We propose the Neural Prototype Tree (ProtoTree), an intrinsically interpretable deep learning method for fine-grained image recognition. ProtoTree combines prototype learning with decision trees, and thus results in a globally interpretable model by design. Additionally, ProtoTree can locally explain a single prediction by outlining a decision path through the tree. Each node in our binary tree contains a trainable prototypical part. The presence or absence of this learned prototype in an image determines the routing through a node. Decision making is therefore similar to human reasoning: Does the bird have a red throat? And an elongated beak? Then it's a hummingbird! We tune the accuracy-interpretability trade-off using ensemble methods, pruning and binarizing. We apply pruning without sacrificing accuracy, resulting in a small tree with only 8 learned prototypes along a path to classify a bird from 200 species. An ensemble of 5 ProtoTrees achieves competitive accuracy on the CUB-200- 2011 and Stanford Cars data sets. Code is available at https://github.com/M-Nauta/ProtoTree
Vote'n'Rank: Revision of Benchmarking with Social Choice Theory
The development of state-of-the-art systems in different applied areas of machine learning (ML) is driven by benchmarks, which have shaped the paradigm of evaluating generalisation capabilities from multiple perspectives. Although the paradigm is shifting towards more fine-grained evaluation across diverse tasks, the delicate question of how to aggregate the performances has received particular interest in the community. In general, benchmarks follow the unspoken utilitarian principles, where the systems are ranked based on their mean average score over task-specific metrics. Such aggregation procedure has been viewed as a sub-optimal evaluation protocol, which may have created the illusion of progress. This paper proposes Vote'n'Rank, a framework for ranking systems in multi-task benchmarks under the principles of the social choice theory. We demonstrate that our approach can be efficiently utilised to draw new insights on benchmarking in several ML sub-fields and identify the best-performing systems in research and development case studies. The Vote'n'Rank's procedures are more robust than the mean average while being able to handle missing performance scores and determine conditions under which the system becomes the winner.
RealHiTBench: A Comprehensive Realistic Hierarchical Table Benchmark for Evaluating LLM-Based Table Analysis
With the rapid advancement of Large Language Models (LLMs), there is an increasing need for challenging benchmarks to evaluate their capabilities in handling complex tabular data. However, existing benchmarks are either based on outdated data setups or focus solely on simple, flat table structures. In this paper, we introduce RealHiTBench, a comprehensive benchmark designed to evaluate the performance of both LLMs and Multimodal LLMs (MLLMs) across a variety of input formats for complex tabular data, including LaTeX, HTML, and PNG. RealHiTBench also includes a diverse collection of tables with intricate structures, spanning a wide range of task types. Our experimental results, using 25 state-of-the-art LLMs, demonstrate that RealHiTBench is indeed a challenging benchmark. Moreover, we also develop TreeThinker, a tree-based pipeline that organizes hierarchical headers into a tree structure for enhanced tabular reasoning, validating the importance of improving LLMs' perception of table hierarchies. We hope that our work will inspire further research on tabular data reasoning and the development of more robust models. The code and data are available at https://github.com/cspzyy/RealHiTBench.
The snake in the Brownian sphere
The Brownian sphere is a random metric space, homeomorphic to the two-dimensional sphere, which arises as the universal scaling limit of many types of random planar maps. The direct construction of the Brownian sphere is via a continuous analogue of the Cori--Vauquelin--Schaeffer (CVS) bijection. The CVS bijection maps labeled trees to planar maps, and the continuous version maps Aldous' continuum random tree with Brownian labels (the Brownian snake) to the Brownian sphere. In this work, we describe the inverse of the continuous CVS bijection, by constructing the Brownian snake as a measurable function of the Brownian sphere. Special care is needed to work with the orientation of the Brownian sphere.
Generalizing Pooling Functions in Convolutional Neural Networks: Mixed, Gated, and Tree
We seek to improve deep neural networks by generalizing the pooling operations that play a central role in current architectures. We pursue a careful exploration of approaches to allow pooling to learn and to adapt to complex and variable patterns. The two primary directions lie in (1) learning a pooling function via (two strategies of) combining of max and average pooling, and (2) learning a pooling function in the form of a tree-structured fusion of pooling filters that are themselves learned. In our experiments every generalized pooling operation we explore improves performance when used in place of average or max pooling. We experimentally demonstrate that the proposed pooling operations provide a boost in invariance properties relative to conventional pooling and set the state of the art on several widely adopted benchmark datasets; they are also easy to implement, and can be applied within various deep neural network architectures. These benefits come with only a light increase in computational overhead during training and a very modest increase in the number of model parameters.
Neural Motifs: Scene Graph Parsing with Global Context
We investigate the problem of producing structured graph representations of visual scenes. Our work analyzes the role of motifs: regularly appearing substructures in scene graphs. We present new quantitative insights on such repeated structures in the Visual Genome dataset. Our analysis shows that object labels are highly predictive of relation labels but not vice-versa. We also find that there are recurring patterns even in larger subgraphs: more than 50% of graphs contain motifs involving at least two relations. Our analysis motivates a new baseline: given object detections, predict the most frequent relation between object pairs with the given labels, as seen in the training set. This baseline improves on the previous state-of-the-art by an average of 3.6% relative improvement across evaluation settings. We then introduce Stacked Motif Networks, a new architecture designed to capture higher order motifs in scene graphs that further improves over our strong baseline by an average 7.1% relative gain. Our code is available at github.com/rowanz/neural-motifs.
Binary Tree Option Pricing Under Market Microstructure Effects: A Random Forest Approach
We propose a machine learning-based extension of the classical binomial option pricing model that incorporates key market microstructure effects. Traditional models assume frictionless markets, overlooking empirical features such as bid-ask spreads, discrete price movements, and serial return correlations. Our framework augments the binomial tree with path-dependent transition probabilities estimated via Random Forest classifiers trained on high-frequency market data. This approach preserves no-arbitrage conditions while embedding real-world trading dynamics into the pricing model. Using 46,655 minute-level observations of SPY from January to June 2025, we achieve an AUC of 88.25% in forecasting one-step price movements. Order flow imbalance is identified as the most influential predictor, contributing 43.2% to feature importance. After resolving time-scaling inconsistencies in tree construction, our model yields option prices that deviate by 13.79% from Black-Scholes benchmarks, highlighting the impact of microstructure on fair value estimation. While computational limitations restrict the model to short-term derivatives, our results offer a robust, data-driven alternative to classical pricing methods grounded in empirical market behavior.
PhyloGFN: Phylogenetic inference with generative flow networks
Phylogenetics is a branch of computational biology that studies the evolutionary relationships among biological entities. Its long history and numerous applications notwithstanding, inference of phylogenetic trees from sequence data remains challenging: the high complexity of tree space poses a significant obstacle for the current combinatorial and probabilistic techniques. In this paper, we adopt the framework of generative flow networks (GFlowNets) to tackle two core problems in phylogenetics: parsimony-based and Bayesian phylogenetic inference. Because GFlowNets are well-suited for sampling complex combinatorial structures, they are a natural choice for exploring and sampling from the multimodal posterior distribution over tree topologies and evolutionary distances. We demonstrate that our amortized posterior sampler, PhyloGFN, produces diverse and high-quality evolutionary hypotheses on real benchmark datasets. PhyloGFN is competitive with prior works in marginal likelihood estimation and achieves a closer fit to the target distribution than state-of-the-art variational inference methods. Our code is available at https://github.com/zmy1116/phylogfn.
Learning to Compose and Reason with Language Tree Structures for Visual Grounding
Grounding natural language in images, such as localizing "the black dog on the left of the tree", is one of the core problems in artificial intelligence, as it needs to comprehend the fine-grained and compositional language space. However, existing solutions rely on the association between the holistic language features and visual features, while neglect the nature of compositional reasoning implied in the language. In this paper, we propose a natural language grounding model that can automatically compose a binary tree structure for parsing the language and then perform visual reasoning along the tree in a bottom-up fashion. We call our model RVG-TREE: Recursive Grounding Tree, which is inspired by the intuition that any language expression can be recursively decomposed into two constituent parts, and the grounding confidence score can be recursively accumulated by calculating their grounding scores returned by sub-trees. RVG-TREE can be trained end-to-end by using the Straight-Through Gumbel-Softmax estimator that allows the gradients from the continuous score functions passing through the discrete tree construction. Experiments on several benchmarks show that our model achieves the state-of-the-art performance with more explainable reasoning.
Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time
The conventional recipe for maximizing model accuracy is to (1) train multiple models with various hyperparameters and (2) pick the individual model which performs best on a held-out validation set, discarding the remainder. In this paper, we revisit the second step of this procedure in the context of fine-tuning large pre-trained models, where fine-tuned models often appear to lie in a single low error basin. We show that averaging the weights of multiple models fine-tuned with different hyperparameter configurations often improves accuracy and robustness. Unlike a conventional ensemble, we may average many models without incurring any additional inference or memory costs -- we call the results "model soups." When fine-tuning large pre-trained models such as CLIP, ALIGN, and a ViT-G pre-trained on JFT, our soup recipe provides significant improvements over the best model in a hyperparameter sweep on ImageNet. The resulting ViT-G model, which attains 90.94% top-1 accuracy on ImageNet, achieved a new state of the art. Furthermore, we show that the model soup approach extends to multiple image classification and natural language processing tasks, improves out-of-distribution performance, and improves zero-shot performance on new downstream tasks. Finally, we analytically relate the performance similarity of weight-averaging and logit-ensembling to flatness of the loss and confidence of the predictions, and validate this relation empirically. Code is available at https://github.com/mlfoundations/model-soups.
FinnWoodlands Dataset
While the availability of large and diverse datasets has contributed to significant breakthroughs in autonomous driving and indoor applications, forestry applications are still lagging behind and new forest datasets would most certainly contribute to achieving significant progress in the development of data-driven methods for forest-like scenarios. This paper introduces a forest dataset called FinnWoodlands, which consists of RGB stereo images, point clouds, and sparse depth maps, as well as ground truth manual annotations for semantic, instance, and panoptic segmentation. FinnWoodlands comprises a total of 4226 objects manually annotated, out of which 2562 objects (60.6\%) correspond to tree trunks classified into three different instance categories, namely "Spruce Tree", "Birch Tree", and "Pine Tree". Besides tree trunks, we also annotated "Obstacles" objects as instances as well as the semantic stuff classes "Lake", "Ground", and "Track". Our dataset can be used in forestry applications where a holistic representation of the environment is relevant. We provide an initial benchmark using three models for instance segmentation, panoptic segmentation, and depth completion, and illustrate the challenges that such unstructured scenarios introduce.
From Complex to Simple: Unraveling the Cognitive Tree for Reasoning with Small Language Models
Reasoning is a distinctive human capacity, enabling us to address complex problems by breaking them down into a series of manageable cognitive steps. Yet, complex logical reasoning is still cumbersome for language models. Based on the dual process theory in cognitive science, we are the first to unravel the cognitive reasoning abilities of language models. Our framework employs an iterative methodology to construct a Cognitive Tree (CogTree). The root node of this tree represents the initial query, while the leaf nodes consist of straightforward questions that can be answered directly. This construction involves two main components: the implicit extraction module (referred to as the intuitive system) and the explicit reasoning module (referred to as the reflective system). The intuitive system rapidly generates multiple responses by utilizing in-context examples, while the reflective system scores these responses using comparative learning. The scores guide the intuitive system in its subsequent generation step. Our experimental results on two popular and challenging reasoning tasks indicate that it is possible to achieve a performance level comparable to that of GPT-3.5 (with 175B parameters), using a significantly smaller language model that contains fewer parameters (<=7B) than 5% of GPT-3.5.
TreeCoder: Systematic Exploration and Optimisation of Decoding and Constraints for LLM Code Generation
Large language models (LLMs) have shown remarkable ability to generate code, yet their outputs often violate syntactic or semantic constraints when guided only through natural language prompts. We introduce TreeCoder, the most general and flexible framework to date for exploring decoding strategies, constraints, and hyperparameters in LLMs, and use it in code generation to enforce correctness and structure during decoding rather than relying on prompt engineering. TreeCoder represents decoding as a tree search over candidate programs, where both decoding strategies and constraint functions - such as style, syntax, execution - are treated as first-class, optimisable components. This design enables systematic exploration and automatic tuning of decoding configurations using standard optimisation techniques. Experiments on the MBPP (Python) and SQL-Spider benchmarks show that TreeCoder consistently improves accuracy across open-source models such as CodeLlama, Mistral and DeepSeek, often outperforming their unconstrained baselines by considerable margins.
