File size: 6,217 Bytes
c2c97b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": [],
      "gpuType": "T4"
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    },
    "accelerator": "GPU"
  },
  "cells": [
    {
      "cell_type": "code",
      "execution_count": 1,
      "metadata": {
        "id": "XKQwuI75LWLA"
      },
      "outputs": [],
      "source": [
        "%%capture\n",
        "!pip install gradio transformers pillow opencv-python\n",
        "!pip install accelerate torchvision torch huggingface_hub\n",
        "!pip install hf_xet qwen-vl-utils gradio_client\n",
        "!pip install transformers-stream-generator spaces"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "import os\n",
        "import uuid\n",
        "import time\n",
        "from threading import Thread\n",
        "\n",
        "import gradio as gr\n",
        "import torch\n",
        "import numpy as np\n",
        "import cv2\n",
        "from PIL import Image\n",
        "from transformers import Qwen2VLForConditionalGeneration, AutoProcessor\n",
        "\n",
        "# Ensure CUDA if available\n",
        "device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
        "\n",
        "# Load Callisto OCR3 multimodal model and processor\n",
        "MODEL_ID = \"prithivMLmods/Imgscope-OCR-2B-0527\"\n",
        "processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)\n",
        "model = Qwen2VLForConditionalGeneration.from_pretrained(\n",
        "    MODEL_ID,\n",
        "    trust_remote_code=True,\n",
        "    torch_dtype=torch.float16\n",
        ").to(device).eval()\n",
        "\n",
        "# Constants\n",
        "MAX_INPUT_TOKEN_LENGTH = 4096\n",
        "\n",
        "\n",
        "def downsample_video(video_path: str, num_frames: int = 10):\n",
        "    \"\"\"\n",
        "    Extracts 'num_frames' evenly spaced frames from the video.\n",
        "    Returns a list of (PIL.Image, timestamp_seconds).\n",
        "    \"\"\"\n",
        "    vidcap = cv2.VideoCapture(video_path)\n",
        "    total = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))\n",
        "    fps = vidcap.get(cv2.CAP_PROP_FPS) or 1\n",
        "    indices = np.linspace(0, total - 1, num_frames, dtype=int)\n",
        "    frames = []\n",
        "    for idx in indices:\n",
        "        vidcap.set(cv2.CAP_PROP_POS_FRAMES, idx)\n",
        "        ret, frame = vidcap.read()\n",
        "        if not ret:\n",
        "            continue\n",
        "        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)\n",
        "        pil = Image.fromarray(frame)\n",
        "        timestamp = round(idx / fps, 2)\n",
        "        frames.append((pil, timestamp))\n",
        "    vidcap.release()\n",
        "    return frames\n",
        "\n",
        "\n",
        "def generate(video_file: str):\n",
        "    \"\"\"\n",
        "    Process the uploaded video through OCR and return concatenated output.\n",
        "    \"\"\"\n",
        "    # Step 1: extract frames\n",
        "    frames = downsample_video(video_file)\n",
        "\n",
        "    # Step 2: build chat-like messages\n",
        "    messages = [\n",
        "        {\"role\": \"system\", \"content\": [{\"type\": \"text\", \"text\": \"You are a helpful assistant, for video understanding.\"}]},\n",
        "        {\"role\": \"user\", \"content\": [{\"type\": \"text\", \"text\": \"Please describe the content of the following video frames:\"}]\n",
        "        }\n",
        "    ]\n",
        "    for img, ts in frames:\n",
        "        # save temporary frame image\n",
        "        path = f\"frame_{uuid.uuid4().hex}.png\"\n",
        "        img.save(path)\n",
        "        messages[1][\"content\"].append({\"type\": \"text\", \"text\": f\"Frame at {ts}s:\"})\n",
        "        messages[1][\"content\"].append({\"type\": \"image\", \"url\": path})\n",
        "\n",
        "    # Step 3: tokenize with truncation\n",
        "    inputs = processor.apply_chat_template(\n",
        "        messages,\n",
        "        tokenize=True,\n",
        "        add_generation_prompt=True,\n",
        "        return_dict=True,\n",
        "        return_tensors=\"pt\",\n",
        "        truncation=True,\n",
        "        max_length=MAX_INPUT_TOKEN_LENGTH\n",
        "    ).to(device)\n",
        "\n",
        "    # Step 4: use streamer to collect output\n",
        "    from transformers import TextIteratorStreamer\n",
        "    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)\n",
        "    gen_kwargs = {\n",
        "        **inputs,\n",
        "        \"streamer\": streamer,\n",
        "        \"max_new_tokens\": 1024,\n",
        "        \"do_sample\": True,\n",
        "        \"temperature\": 0.7,\n",
        "    }\n",
        "    thread = Thread(target=model.generate, kwargs=gen_kwargs)\n",
        "    thread.start()\n",
        "\n",
        "    # collect all tokens\n",
        "    buffer = \"\"\n",
        "    for chunk in streamer:\n",
        "        buffer += chunk.replace(\"<|im_end|>\", \"\")\n",
        "        time.sleep(0.01)\n",
        "\n",
        "    # return full concatenated response\n",
        "    return buffer\n",
        "\n",
        "\n",
        "def launch_app():\n",
        "    demo = gr.Interface(\n",
        "        fn=generate,\n",
        "        inputs=gr.Video(label=\"Upload Video\"),\n",
        "        outputs=gr.Textbox(label=\"Video Description\"),\n",
        "        title=\"Video Understanding with Imgscope-OCR-2B-0527\",\n",
        "        description=\"Upload a video and get an OCR-based description of its frames.\",\n",
        "        allow_flagging=\"never\"\n",
        "    )\n",
        "    demo.queue().launch(debug=True)\n",
        "\n",
        "\n",
        "if __name__ == \"__main__\":\n",
        "    launch_app()"
      ],
      "metadata": {
        "id": "GZXqC00zLbS1"
      },
      "execution_count": null,
      "outputs": []
    }
  ]
}