--- language: avk language_name: Kotava language_family: constructed_other tags: - wikilangs - nlp - tokenizer - embeddings - n-gram - markov - wikipedia - feature-extraction - sentence-similarity - tokenization - n-grams - markov-chain - text-mining - fasttext - babelvec - vocabulous - vocabulary - monolingual - family-constructed_other license: mit library_name: wikilangs pipeline_tag: text-generation datasets: - omarkamali/wikipedia-monthly dataset_info: name: wikipedia-monthly description: Monthly snapshots of Wikipedia articles across 300+ languages metrics: - name: best_compression_ratio type: compression value: 4.689 - name: best_isotropy type: isotropy value: 0.8768 - name: vocabulary_size type: vocab value: 0 generated: 2026-01-03 --- # Kotava - Wikilangs Models ## Comprehensive Research Report & Full Ablation Study This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Kotava** Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings. ## 📋 Repository Contents ### Models & Assets - Tokenizers (8k, 16k, 32k, 64k) - N-gram models (2, 3, 4, 5-gram) - Markov chains (context of 1, 2, 3, 4 and 5) - Subword N-gram and Markov chains - Embeddings in various sizes and dimensions (aligned and unaligned) - Language Vocabulary - Language Statistics ![Performance Dashboard](visualizations/performance_dashboard.png) ### Analysis and Evaluation - [1. Tokenizer Evaluation](#1-tokenizer-evaluation) - [2. N-gram Model Evaluation](#2-n-gram-model-evaluation) - [3. Markov Chain Evaluation](#3-markov-chain-evaluation) - [4. Vocabulary Analysis](#4-vocabulary-analysis) - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation) - [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental) - [7. Summary & Recommendations](#7-summary--recommendations) - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide) - [Visualizations Index](#visualizations-index) --- ## 1. Tokenizer Evaluation ![Tokenizer Compression](visualizations/tokenizer_compression.png) ![Tokenizer Fertility](visualizations/tokenizer_fertility.png) ![Tokenizer OOV](visualizations/tokenizer_oov.png) ![Total Tokens](visualizations/tokenizer_total_tokens.png) ### Results | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens | |------------|-------------|---------------|----------|--------------| | **8k** | 3.689x | 3.69 | 0.2370% | 255,266 | | **16k** | 4.051x | 4.06 | 0.2603% | 232,417 | | **32k** | 4.380x | 4.39 | 0.2815% | 214,947 | | **64k** | 4.689x 🏆 | 4.69 | 0.3013% | 200,817 | ### Tokenization Examples Below are sample sentences tokenized with each vocabulary size: **Sample 1:** `Victoria tir kelu is lozolonafa widava ke Seycella tigisa valente patecta koe Ma...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁victor ia ▁tir ▁kelu ▁is ▁lozolonafa ▁widava ▁ke ▁s ey ... (+13 more)` | 23 | | 16k | `▁victoria ▁tir ▁kelu ▁is ▁lozolonafa ▁widava ▁ke ▁sey c ella ... (+10 more)` | 20 | | 32k | `▁victoria ▁tir ▁kelu ▁is ▁lozolonafa ▁widava ▁ke ▁sey c ella ... (+10 more)` | 20 | | 64k | `▁victoria ▁tir ▁kelu ▁is ▁lozolonafa ▁widava ▁ke ▁seycella ▁tigisa ▁valente ... (+8 more)` | 18 | **Sample 2:** `Bifa Afrika Amerika Asia Europa Oceania Koblira Awalkera sanda` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁bifa ▁afrika ▁amerika ▁asia ▁europa ▁oceania ▁koblira ▁awalkera ▁sanda` | 9 | | 16k | `▁bifa ▁afrika ▁amerika ▁asia ▁europa ▁oceania ▁koblira ▁awalkera ▁sanda` | 9 | | 32k | `▁bifa ▁afrika ▁amerika ▁asia ▁europa ▁oceania ▁koblira ▁awalkera ▁sanda` | 9 | | 64k | `▁bifa ▁afrika ▁amerika ▁asia ▁europa ▁oceania ▁koblira ▁awalkera ▁sanda` | 9 | **Sample 3:** `Bifa Afrika Amerika Asia Europa Oceania Koblira Awalkera sanda` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁bifa ▁afrika ▁amerika ▁asia ▁europa ▁oceania ▁koblira ▁awalkera ▁sanda` | 9 | | 16k | `▁bifa ▁afrika ▁amerika ▁asia ▁europa ▁oceania ▁koblira ▁awalkera ▁sanda` | 9 | | 32k | `▁bifa ▁afrika ▁amerika ▁asia ▁europa ▁oceania ▁koblira ▁awalkera ▁sanda` | 9 | | 64k | `▁bifa ▁afrika ▁amerika ▁asia ▁europa ▁oceania ▁koblira ▁awalkera ▁sanda` | 9 | ### Key Findings - **Best Compression:** 64k achieves 4.689x compression - **Lowest UNK Rate:** 8k with 0.2370% unknown tokens - **Trade-off:** Larger vocabularies improve compression but increase model size - **Recommendation:** 32k vocabulary provides optimal balance for production use --- ## 2. N-gram Model Evaluation ![N-gram Perplexity](visualizations/ngram_perplexity.png) ![N-gram Unique](visualizations/ngram_unique.png) ![N-gram Coverage](visualizations/ngram_coverage.png) ### Results | N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage | |--------|---------|------------|---------|----------------|------------------|-------------------| | **2-gram** | Word | 4,342 | 12.08 | 65,378 | 38.8% | 59.6% | | **2-gram** | Subword | 284 🏆 | 8.15 | 3,324 | 63.4% | 99.6% | | **3-gram** | Word | 9,058 | 13.14 | 131,536 | 34.4% | 51.5% | | **3-gram** | Subword | 1,996 | 10.96 | 24,495 | 26.3% | 74.2% | | **4-gram** | Word | 16,918 | 14.05 | 222,038 | 30.4% | 44.4% | | **4-gram** | Subword | 7,464 | 12.87 | 124,607 | 17.4% | 50.9% | | **5-gram** | Word | 18,754 | 14.19 | 212,819 | 28.7% | 42.2% | | **5-gram** | Subword | 17,155 | 14.07 | 346,727 | 14.4% | 42.8% | ### Top 5 N-grams by Size **2-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `en vuest` | 113,005 | | 2 | `of life` | 25,896 | | 3 | `of the` | 24,998 | | 4 | `the world` | 24,670 | | 5 | `mammal species` | 24,652 | **3-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `of the world` | 24,657 | | 2 | `mammal species of` | 24,652 | | 3 | `species of the` | 24,652 | | 4 | `taneon zo pimtayar` | 15,544 | | 5 | `bak taneon zo` | 15,311 | **4-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `species of the world` | 24,652 | | 2 | `mammal species of the` | 24,652 | | 3 | `bak taneon zo pimtayar` | 15,309 | | 4 | `zo pimtayar vexala dem` | 15,226 | | 5 | `taneon zo pimtayar vexala` | 15,225 | **5-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `mammal species of the world` | 24,652 | | 2 | `taneon zo pimtayar vexala dem` | 15,225 | | 3 | `bak taneon zo pimtayar vexala` | 14,992 | | 4 | `en vuest animal diversity web` | 14,121 | | 5 | `en vuest catalogue of life` | 14,116 | **2-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `a _` | 682,687 | | 2 | `s _` | 476,530 | | 3 | `_ (` | 458,247 | | 4 | `e _` | 386,463 | | 5 | `_ v` | 360,083 | **3-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `_ : _` | 268,658 | | 2 | `u s _` | 176,817 | | 3 | `e s t` | 175,950 | | 4 | `_ v u` | 167,654 | | 5 | `u e s` | 166,548 | **4-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `u e s t` | 164,186 | | 2 | `_ v u e` | 163,879 | | 3 | `v u e s` | 163,702 | | 4 | `) _ v u` | 124,953 | | 5 | `e s t -` | 124,892 | **5-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `_ v u e s` | 163,700 | | 2 | `v u e s t` | 163,699 | | 3 | `u e s t -` | 124,886 | | 4 | `e s t - _` | 124,885 | | 5 | `) _ v u e` | 124,841 | ### Key Findings - **Best Perplexity:** 2-gram (subword) with 284 - **Entropy Trend:** Decreases with larger n-grams (more predictable) - **Coverage:** Top-1000 patterns cover ~43% of corpus - **Recommendation:** 4-gram or 5-gram for best predictive performance --- ## 3. Markov Chain Evaluation ![Markov Entropy](visualizations/markov_entropy.png) ![Markov Contexts](visualizations/markov_contexts.png) ![Markov Branching](visualizations/markov_branching.png) ### Results | Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability | |---------|---------|-------------|------------|------------------|-----------------|----------------| | **1** | Word | 0.9054 | 1.873 | 5.52 | 115,002 | 9.5% | | **1** | Subword | 1.0377 | 2.053 | 7.85 | 900 | 0.0% | | **2** | Word | 0.2492 | 1.189 | 1.63 | 633,477 | 75.1% | | **2** | Subword | 0.9459 | 1.926 | 5.95 | 7,069 | 5.4% | | **3** | Word | 0.1398 | 1.102 | 1.31 | 1,026,801 | 86.0% | | **3** | Subword | 0.7949 | 1.735 | 4.30 | 42,037 | 20.5% | | **4** | Word | 0.1005 🏆 | 1.072 | 1.21 | 1,342,358 | 89.9% | | **4** | Subword | 0.6925 | 1.616 | 3.14 | 180,930 | 30.8% | ### Generated Text Samples (Word-based) Below are text samples generated from each word-based Markov chain model: **Context Size 1:** 1. `en fr vuest paleobiology database dipodomys heermanni heermanni jolonensis grinnell and chiefdom a a...` 2. `vuest paleobiology database xerus erythropus leucoumbrinus rüppell en vuest paleobiology database bu...` 3. `ke otomops johnstonei en vuest itis rusa bak taneon zo bendeyer ewava vuestexa is xantaza en` **Context Size 2:** 1. `en vuest walvedeyafa zveriopafa aba 2 2 siatos 5 katca oxi phonygammus 1 katca proklano philemon pro...` 2. `of life dicerorhinus sumatrensis lasiotis en vuest ncbi campicoloides fr en vuest mammal species of ...` 3. `of the world siatos ke konakara apta dere tid ke mila veyafa katca vesnol nycticeius humeralis humer...` **Context Size 3:** 1. `of the world v 3 petrogale purpureicollis le souef en vuest cites ctenomys colburni en vuest uicn ka...` 2. `species of the world v 3 isolobodon portoricensis j a allen vesnol myotis yumanensis sociabilis h w ...` 3. `mammal species of the world siatos ke konakara apta dere tid ke mila veyafa katca vesnol lonchorhina...` **Context Size 4:** 1. `species of the world siatos ke bata katca tir aptiskafa dere rupel pulasa vuestexa is xantaza en vue...` 2. `mammal species of the world siatos ke bata katca tir aptiskafa pulasa vuestexa is xantaza en vuest m...` 3. `bak taneon zo pimtayar vexala dem katceem sedme vuestesa pulara ke walvedeyafa zveriopafa aba 2 2 si...` ### Generated Text Samples (Subword-based) Below are text samples generated from each subword-based Markov chain model: **Context Size 1:** 1. `_ves_wirtis_cada` 2. `aldronururuda_a,` 3. `e_oe_s_ta_tcimot` **Context Size 2:** 1. `a_:_cathirojunafa` 2. `s_:_le="vey_tazne` 3. `_(heropanelterifo` **Context Size 3:** 1. `_:_burnata_kuksa_(` 2. `us_paleobiologue_o` 3. `ested_nudingus_vor` **Context Size 4:** 1. `uest-_:_uicn_:_acom` 2. `_vuestesa_vaticus_p` 3. `vuest-_:_mephitis_:` ### Key Findings - **Best Predictability:** Context-4 (word) with 89.9% predictability - **Branching Factor:** Decreases with context size (more deterministic) - **Memory Trade-off:** Larger contexts require more storage (180,930 contexts) - **Recommendation:** Context-3 or Context-4 for text generation --- ## 4. Vocabulary Analysis ![Zipf's Law](visualizations/zipf_law.png) ![Top Words](visualizations/top20_words.png) ![Coverage Curve](visualizations/vocab_coverage.png) ### Statistics | Metric | Value | |--------|-------| | Vocabulary Size | 58,045 | | Total Tokens | 3,510,675 | | Mean Frequency | 60.48 | | Median Frequency | 5 | | Frequency Std Dev | 1080.85 | ### Most Common Words | Rank | Word | Frequency | |------|------|-----------| | 1 | en | 127,527 | | 2 | vuest | 124,885 | | 3 | ke | 85,172 | | 4 | of | 52,509 | | 5 | tir | 40,501 | | 6 | is | 37,459 | | 7 | katca | 36,160 | | 8 | va | 35,241 | | 9 | bak | 28,713 | | 10 | koe | 28,499 | ### Least Common Words (from vocabulary) | Rank | Word | Frequency | |------|------|-----------| | 1 | medotegalaf | 2 | | 2 | j1 | 2 | | 3 | tageltaf | 2 | | 4 | l4 | 2 | | 5 | l5 | 2 | | 6 | l6 | 2 | | 7 | l8 | 2 | | 8 | fakaf | 2 | | 9 | rozuxa | 2 | | 10 | eaksat | 2 | ### Zipf's Law Analysis | Metric | Value | |--------|-------| | Zipf Coefficient | 1.1330 | | R² (Goodness of Fit) | 0.996896 | | Adherence Quality | **excellent** | ### Coverage Analysis | Top N Words | Coverage | |-------------|----------| | Top 100 | 48.9% | | Top 1,000 | 72.2% | | Top 5,000 | 86.2% | | Top 10,000 | 91.0% | ### Key Findings - **Zipf Compliance:** R²=0.9969 indicates excellent adherence to Zipf's law - **High Frequency Dominance:** Top 100 words cover 48.9% of corpus - **Long Tail:** 48,045 words needed for remaining 9.0% coverage --- ## 5. Word Embeddings Evaluation ![Embedding Isotropy](visualizations/embedding_isotropy.png) ![Similarity Matrix](visualizations/embedding_similarity.png) ![t-SNE Words](visualizations/tsne_words.png) ![t-SNE Sentences](visualizations/tsne_sentences.png) ### 5.1 Cross-Lingual Alignment ![Alignment Quality](visualizations/embedding_alignment_quality.png) ![Multilingual t-SNE](visualizations/embedding_tsne_multilingual.png) ### 5.2 Model Comparison | Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 | |-------|-----------|----------|------------------|---------------|----------------| | **mono_32d** | 32 | 0.8768 🏆 | 0.3464 | N/A | N/A | | **mono_64d** | 64 | 0.8339 | 0.2956 | N/A | N/A | | **mono_128d** | 128 | 0.6767 | 0.2580 | N/A | N/A | | **aligned_32d** | 32 | 0.8768 | 0.3495 | 0.0440 | 0.2440 | | **aligned_64d** | 64 | 0.8339 | 0.2976 | 0.0760 | 0.3520 | | **aligned_128d** | 128 | 0.6767 | 0.2493 | 0.1320 | 0.4720 | ### Key Findings - **Best Isotropy:** mono_32d with 0.8768 (more uniform distribution) - **Semantic Density:** Average pairwise similarity of 0.2994. Lower values indicate better semantic separation. - **Alignment Quality:** Aligned models achieve up to 13.2% R@1 in cross-lingual retrieval. - **Recommendation:** 128d aligned for best cross-lingual performance --- ## 6. Morphological Analysis (Experimental) This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data. ### 6.1 Productivity & Complexity | Metric | Value | Interpretation | Recommendation | |--------|-------|----------------|----------------| | Productivity Index | **5.000** | High morphological productivity | Reliable analysis | | Idiomaticity Gap | **-0.015** | Low formulaic content | - | ### 6.2 Affix Inventory (Productive Units) These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts. #### Productive Prefixes | Prefix | Examples | |--------|----------| | `-ma` | maltadleks, marnatum, marco | #### Productive Suffixes | Suffix | Examples | |--------|----------| | `-a` | teguina, coa, klaba | | `-s` | verticalis, mees, tellus | | `-us` | tellus, scapanulus, catagonus | | `-ra` | tara, aliera, mallanira | | `-er` | edobeyer, walzer, palliser | | `-is` | verticalis, anhuiensis, quitensis | | `-on` | goreston, styron, laizon | | `-fa` | kaikifa, isteamerikafa, lopinafa | ### 6.3 Bound Stems (Lexical Roots) Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid. | Stem | Cohesion | Substitutability | Examples | |------|----------|------------------|----------| | `ayar` | 2.06x | 93 contexts | vayar, wayar, iayar | | `ensi` | 2.30x | 45 contexts | pensil, owensi, hensies | | `anta` | 1.76x | 73 contexts | canta, tanta, xanta | | `urus` | 2.30x | 23 contexts | purus, urusí, myurus | | `imta` | 2.02x | 22 contexts | pimtas, pimtad, pimtan | | `tava` | 1.80x | 25 contexts | stava, kotava, poltava | | `atca` | 1.64x | 31 contexts | zatca, datca, catca | | `pimt` | 2.34x | 8 contexts | pimtas, pimtad, pimtan | | `stes` | 1.71x | 16 contexts | lestes, wastes, restes | | `xant` | 1.51x | 19 contexts | xanta, xanto, xantik | | `neon` | 2.03x | 8 contexts | deneon, keneon, roneon | | `ukol` | 1.51x | 14 contexts | bukol, stukol, moukol | ### 6.4 Affix Compatibility (Co-occurrence) This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology. | Prefix | Suffix | Frequency | Examples | |--------|--------|-----------|----------| | `-ma` | `-a` | 34 words | mafia, malaya | | `-ma` | `-s` | 29 words | maculicollis, mangas | | `-ma` | `-is` | 13 words | maculicollis, managuensis | | `-ma` | `-us` | 8 words | macrocephalicus, mastus | | `-ma` | `-ra` | 7 words | malyerara, mallapira | | `-ma` | `-on` | 5 words | maubuisson, malsaveson | | `-ma` | `-er` | 5 words | malgruper, mayasquer | | `-ma` | `-es` | 4 words | manzanares, macropodiformes | | `-ma` | `-fa` | 4 words | magyarafa, malyoparafa | | `-ma` | `-afa` | 4 words | magyarafa, malyoparafa | ### 6.5 Recursive Morpheme Segmentation Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`). | Word | Suggested Split | Confidence | Stem | |------|-----------------|------------|------| | balumarafa | **`balumar-afa`** | 4.5 | `balumar` | | vageroneon | **`vagerone-on`** | 4.5 | `vagerone` | | koridanikafa | **`koridanik-afa`** | 4.5 | `koridanik` | | lidarotifa | **`lidaroti-fa`** | 4.5 | `lidaroti` | | pacificus | **`pacific-us`** | 4.5 | `pacific` | | yambikafa | **`yambik-afa`** | 4.5 | `yambik` | | zimmerius | **`zimmeri-us`** | 4.5 | `zimmeri` | | christies | **`christi-es`** | 4.5 | `christi` | | bristutuson | **`bristut-us-on`** | 3.0 | `bristut` | | aultoveson | **`aultov-es-on`** | 3.0 | `aultov` | | promeneuses | **`promene-us-es`** | 3.0 | `promene` | | stakseson | **`staks-es-on`** | 3.0 | `staks` | | atlantoxerus | **`atlantox-er-us`** | 3.0 | `atlantox` | | mantukafa | **`ma-ntuk-afa`** | 3.0 | `ntuk` | | ruyatakoler | **`ruyatakol-er`** | 1.5 | `ruyatakol` | ### 6.6 Linguistic Interpretation > **Automated Insight:** The language Kotava shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding. --- ## 7. Summary & Recommendations ![Performance Dashboard](visualizations/performance_dashboard.png) ### Production Recommendations | Component | Recommended | Rationale | |-----------|-------------|-----------| | Tokenizer | **64k BPE** | Best compression (4.69x) | | N-gram | **2-gram** | Lowest perplexity (284) | | Markov | **Context-4** | Highest predictability (89.9%) | | Embeddings | **100d** | Balanced semantic capture and isotropy | --- ## Appendix: Metrics Glossary & Interpretation Guide This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report. ### Tokenizer Metrics **Compression Ratio** > *Definition:* The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text. > > *Intuition:* Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average. > > *What to seek:* Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information. **Average Token Length (Fertility)** > *Definition:* Mean number of characters per token produced by the tokenizer. > > *Intuition:* Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length. > > *What to seek:* Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens. **Unknown Token Rate (OOV Rate)** > *Definition:* Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent. > > *Intuition:* Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences. > > *What to seek:* Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback. ### N-gram Model Metrics **Perplexity** > *Definition:* Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction. > > *Intuition:* If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options. > > *What to seek:* Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size. **Entropy** > *Definition:* Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy. > > *Intuition:* High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character. > > *What to seek:* Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases. **Coverage (Top-K)** > *Definition:* Percentage of corpus occurrences explained by the top K most frequent n-grams. > > *Intuition:* High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage. > > *What to seek:* Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text. ### Markov Chain Metrics **Average Entropy** > *Definition:* Mean entropy across all contexts, measuring average uncertainty in next-word prediction. > > *Intuition:* Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations). > > *What to seek:* Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions. **Branching Factor** > *Definition:* Average number of unique next tokens observed for each context. > > *Intuition:* High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive). > > *What to seek:* Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains. **Predictability** > *Definition:* Derived metric: (1 - normalized_entropy) × 100%. Indicates how deterministic the model's predictions are. > > *Intuition:* 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes. > > *What to seek:* Higher predictability for text generation quality, but too high (>98%) may produce repetitive output. ### Vocabulary & Zipf's Law Metrics **Zipf's Coefficient** > *Definition:* The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1. > > *Intuition:* A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare. > > *What to seek:* Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text. **R² (Coefficient of Determination)** > *Definition:* Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1. > > *Intuition:* R² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns. > > *What to seek:* R² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora. **Vocabulary Coverage** > *Definition:* Cumulative percentage of corpus tokens accounted for by the top N words. > > *Intuition:* Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words. > > *What to seek:* Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary. ### Word Embedding Metrics **Isotropy** > *Definition:* Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values. > > *Intuition:* High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness. > > *What to seek:* Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy. **Average Norm** > *Definition:* Mean magnitude (L2 norm) of word vectors in the embedding space. > > *Intuition:* Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained. > > *What to seek:* Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation). **Cosine Similarity** > *Definition:* Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction). > > *Intuition:* Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings. > > *What to seek:* Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7. **t-SNE Visualization** > *Definition:* t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization. > > *Intuition:* Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence. > > *What to seek:* Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure. ### General Interpretation Guidelines 1. **Compare within model families:** Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer). 2. **Consider trade-offs:** Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate). 3. **Context matters:** Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification. 4. **Corpus influence:** All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature. 5. **Language-specific patterns:** Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages. ### Visualizations Index | Visualization | Description | |---------------|-------------| | Tokenizer Compression | Compression ratios by vocabulary size | | Tokenizer Fertility | Average token length by vocabulary | | Tokenizer OOV | Unknown token rates | | Tokenizer Total Tokens | Total tokens by vocabulary | | N-gram Perplexity | Perplexity by n-gram size | | N-gram Entropy | Entropy by n-gram size | | N-gram Coverage | Top pattern coverage | | N-gram Unique | Unique n-gram counts | | Markov Entropy | Entropy by context size | | Markov Branching | Branching factor by context | | Markov Contexts | Unique context counts | | Zipf's Law | Frequency-rank distribution with fit | | Vocab Frequency | Word frequency distribution | | Top 20 Words | Most frequent words | | Vocab Coverage | Cumulative coverage curve | | Embedding Isotropy | Vector space uniformity | | Embedding Norms | Vector magnitude distribution | | Embedding Similarity | Word similarity heatmap | | Nearest Neighbors | Similar words for key terms | | t-SNE Words | 2D word embedding visualization | | t-SNE Sentences | 2D sentence embedding visualization | | Position Encoding | Encoding method comparison | | Model Sizes | Storage requirements | | Performance Dashboard | Comprehensive performance overview | --- ## About This Project ### Data Source Models trained on [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - a monthly snapshot of Wikipedia articles across 300+ languages. ### Project A project by **[Wikilangs](https://wikilangs.org)** - Open-source NLP models for every Wikipedia language. ### Maintainer [Omar Kamali](https://omarkamali.com) - [Omneity Labs](https://omneitylabs.com) ### Citation If you use these models in your research, please cite: ```bibtex @misc{wikilangs2025, author = {Kamali, Omar}, title = {Wikilangs: Open NLP Models for Wikipedia Languages}, year = {2025}, doi = {10.5281/zenodo.18073153}, publisher = {Zenodo}, url = {https://huggingface.co/wikilangs} institution = {Omneity Labs} } ``` ### License MIT License - Free for academic and commercial use. ### Links - 🌐 Website: [wikilangs.org](https://wikilangs.org) - 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs) - 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali) - 🤝 Sponsor: [Featherless AI](https://featherless.ai) --- *Generated by Wikilangs Models Pipeline* *Report Date: 2026-01-03 17:46:55*