Oncology research
Collection
19 items
•
Updated
axolotl version: 0.9.2
# uv run python csub.py --name mistral -g 8 --node_type h200 -t 1d --large_shm -c "conda deactivate && cd /mloscratch/homes/vignoud/novartis-oncology/training/axolotl && uv run axolotl train mistral-small-3-24B-cpt.yml 2>&1 | tee logs_mistral.txt" --train
base_model: mistralai/Mistral-Small-24B-Instruct-2501
dataset_prepared_path: ./prepared_data/2025-07-22-16-28_Mistral-Small-24B-Instruct-2501-mixture-sampled_0.1
output_dir: /mloscratch/homes/vignoud/novartis-oncology/models/2025-07-22-16-28_Mistral-Small-24B-Instruct-2501-mixture-sampled_0.1
wandb_name: 2025-07-22-16-28_Mistral-Small-24B-Instruct-2501-mixture-sampled_0.1
### TOKENIZING ###
chat_template: mistral_v7_tekken
### DATASET ###
datasets:
- path: /mloscratch/homes/vignoud/novartis-oncology/data/training/oncology-cpt-mixture-sampled-0.1-mistral
split: train
type: completion
text_column: text
test_datasets:
- path: /mloscratch/homes/vignoud/novartis-oncology/data/training/oncology-cpt-mixture-sampled-0.1-mistral
split: validation
type: completion
text_column: text
sequence_len: 8192
pretraining_sample_concatenation: false
pad_to_sequence_len: true
train_on_inputs: false
sample_packing: true
eval_sample_packing: false
special_tokens:
### MULTI_GPU ###
deepspeed: deepspeed_configs/zero3_bf16.json
### TRAINING ###
learning_rate: 0.000001
optimizer: adamw_torch
lr_scheduler: cosine
flash_attention: true
warmup_ratio: 0.1
max_grad_norm: 1.0
weight_decay: 0.0
### EPOCHS ###
# max_steps: 10
# save_steps: 100
num_epochs: 1
evals_per_epoch: 10
saves_per_epoch: 10
### BATCH SIZE ###
gradient_checkpointing: true
gradient_accumulation_steps: 4
micro_batch_size: 2
### PRECISION ###
# Use CUDA bf16. bool or 'full' for `bf16_full_eval` to run evals in 16 bits without AMP, or 'auto' for automatic detection.
# require >=ampere
bf16: auto
fp16: false # Use CUDA fp16
fp8: false
bfloat16: false # No AMP (automatic mixed precision) - require >=ampere
float16: false # No AMP (automatic mixed precision)
tf32: false # Use CUDA tf32 - require >=ampere
float32: false
### LOGGING ###
logging_steps: 1
wandb_project: axolotl
wandb_entity:
wandb_watch:
wandb_log_model:
seed: 42
This model is a fine-tuned version of mistralai/Mistral-Small-24B-Instruct-2501 on the None dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 1.5243 | 0.0017 | 1 | 1.6344 |
| 1.4572 | 0.1006 | 59 | 1.5336 |
| 1.5065 | 0.2011 | 118 | 1.5206 |
| 1.4894 | 0.3017 | 177 | 1.5131 |
| 1.4846 | 0.4022 | 236 | 1.5082 |
| 1.4366 | 0.5028 | 295 | 1.5053 |
| 1.5287 | 0.6033 | 354 | 1.5036 |
| 1.445 | 0.7039 | 413 | 1.5024 |
| 1.4656 | 0.8044 | 472 | 1.5016 |
| 1.4702 | 0.9050 | 531 | 1.5015 |
Base model
mistralai/Mistral-Small-24B-Base-2501