Built with Axolotl

See axolotl config

axolotl version: 0.9.2

# uv run python csub.py --name mistral -g 8 --node_type h200 -t 1d --large_shm -c "conda deactivate && cd /mloscratch/homes/vignoud/novartis-oncology/training/axolotl && uv run axolotl train mistral-small-3-24B-cpt.yml 2>&1 | tee logs_mistral.txt" --train
base_model: mistralai/Mistral-Small-24B-Instruct-2501
dataset_prepared_path: ./prepared_data/2025-07-24-14-34_Mistral-Small-24B-Instruct-2501-oncology-cpt-mixture
output_dir: /mloscratch/homes/vignoud/novartis-oncology/models/2025-07-24-14-34_Mistral-Small-24B-Instruct-2501-oncology-cpt-mixture
wandb_name: 2025-07-24-14-34_Mistral-Small-24B-Instruct-2501-oncology-cpt-mixture

### TOKENIZING ###
chat_template: mistral_v7_tekken
### DATASET ###
datasets: 
  - path: JulienVig/oncology-cpt-mixture
    split: train
    type: completion
    text_column: text

test_datasets:
  - path: JulienVig/oncology-cpt-mixture
    split: validation
    type: completion
    text_column: text

sequence_len: 8192
pretraining_sample_concatenation: false
pad_to_sequence_len: true
train_on_inputs: false
sample_packing: true
eval_sample_packing: false
special_tokens:

### MULTI_GPU ###
deepspeed: deepspeed_configs/zero3_bf16.json

### TRAINING ###

learning_rate: 0.000001
optimizer: adamw_torch
lr_scheduler: cosine
flash_attention: true
# warmup_ratio: 0.1
warmup_steps: 500
max_grad_norm: 1.0
weight_decay: 0.0

### EPOCHS  ###
# max_steps: 10
# save_steps: 100
num_epochs: 1
evals_steps: 500
# evals_per_epoch: 100
save_strategy: "best"
# saves_per_epoch: 100
save_total_limit: 5
load_best_model_at_end: true
metric_for_best_model: "eval_loss"
greater_is_better: false

### BATCH SIZE ###
gradient_checkpointing: true
gradient_accumulation_steps: 5
micro_batch_size: 4

### PRECISION ###
# Use CUDA bf16. bool or 'full' for `bf16_full_eval` to run evals in 16 bits without AMP,  or 'auto' for automatic detection.
# require >=ampere
bf16: auto
fp16: false # Use CUDA fp16
fp8: false
bfloat16: false # No AMP (automatic mixed precision) - require >=ampere
float16: false # No AMP (automatic mixed precision)
tf32: false # Use CUDA tf32 - require >=ampere
float32: false

### LOGGING ###
logging_steps: 1
wandb_project: axolotl
wandb_entity:
wandb_watch:
wandb_log_model:

seed: 42


mloscratch/homes/vignoud/novartis-oncology/models/2025-07-24-14-34_Mistral-Small-24B-Instruct-2501-oncology-cpt-mixture

This model is a fine-tuned version of mistralai/Mistral-Small-24B-Instruct-2501 on the JulienVig/oncology-cpt-mixture dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4426

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 5
  • total_train_batch_size: 160
  • total_eval_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 1.0

Training results

Training Loss Epoch Step Validation Loss
1.4482 0.9997 2342 1.4426

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
10
Safetensors
Model size
24B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for JulienVig/2025-07-24-14-34_Mistral-Small-24B-Instruct-2501-oncology-cpt-mixture

Dataset used to train JulienVig/2025-07-24-14-34_Mistral-Small-24B-Instruct-2501-oncology-cpt-mixture

Collection including JulienVig/2025-07-24-14-34_Mistral-Small-24B-Instruct-2501-oncology-cpt-mixture

Evaluation results