LeRobot documentation
NVIDIA IsaacLab Arena & LeRobot
NVIDIA IsaacLab Arena & LeRobot
LeRobot EnvHub now supports GPU-accelerated simulation with IsaacLab Arena for policy evaluation at scale. Train and evaluate imitation learning policies with high-fidelity simulation — all integrated into the LeRobot ecosystem.
IsaacLab Arena integrates with NVIDIA IsaacLab to provide:
- 🤖 Humanoid embodiments: GR1, G1, Galileo with various configurations
- 🎯 Manipulation & loco-manipulation tasks: Door opening, pick-and-place, button pressing, and more
- ⚡ GPU-accelerated rollouts: Parallel environment execution on NVIDIA GPUs
- 🖼️ RTX Rendering: Evaluate vision-based policies with realistic rendering, reflections and refractions
- 📦 LeRobot-compatible datasets: Ready for training with GR00T N1x, PI0, SmolVLA, ACT, and Diffusion policies
- 🔄 EnvHub integration: Load environments from HuggingFace EnvHub with one line
Installation
Prerequisites
Hardware requirements are shared with Isaac Sim, and are detailed in Isaac Sim Requirements.
- NVIDIA GPU with CUDA support
- NVIDIA driver compatible with IsaacSim 5.1.0
- Linux (Ubuntu 22.04 / 24.04)
Setup
# 1. Create conda environment
conda create -y -n lerobot-arena python=3.11
conda activate lerobot-arena
conda install -y -c conda-forge ffmpeg=7.1.1
# 2. Install Isaac Sim 5.1.0
pip install "isaacsim[all,extscache]==5.1.0" --extra-index-url https://pypi.nvidia.com
# Accept NVIDIA EULA (required)
export ACCEPT_EULA=Y
export PRIVACY_CONSENT=Y
# 3. Install IsaacLab 2.3.0
git clone https://github.com/isaac-sim/IsaacLab.git
cd IsaacLab
git checkout v2.3.0
./isaaclab.sh -i
cd ..
# 4. Install IsaacLab Arena
git clone https://github.com/isaac-sim/IsaacLab-Arena.git
cd IsaacLab-Arena
git checkout release/0.1.1
pip install -e .
cd ..
# 5. Install LeRobot
git clone https://github.com/huggingface/lerobot.git
cd lerobot
pip install -e .
cd ..
# 6. Install additional dependencies
pip install onnxruntime==1.23.2 lightwheel-sdk==1.0.1 vuer[all]==0.0.70 qpsolvers==4.8.1
pip install numpy==1.26.0 # Isaac Sim 5.1 depends on numpy==1.26.0, this will be fixed in next releaseEvaluating Policies
Pre-trained Policies
The following trained policies are available:
| Policy | Architecture | Task | Link |
|---|---|---|---|
| pi05-arena-gr1-microwave | PI0.5 | GR1 Microwave | HuggingFace |
| smolvla-arena-gr1-microwave | SmolVLA | GR1 Microwave | HuggingFace |
Evaluate SmolVLA
pip install -e ".[smolvla]"
pip install numpy==1.26.0 # revert numpy to version 1.26lerobot-eval \
--policy.path=nvidia/smolvla-arena-gr1-microwave \
--env.type=isaaclab_arena \
--env.hub_path=nvidia/isaaclab-arena-envs \
--rename_map='{"observation.images.robot_pov_cam_rgb": "observation.images.robot_pov_cam"}' \
--policy.device=cuda \
--env.environment=gr1_microwave \
--env.embodiment=gr1_pink \
--env.object=mustard_bottle \
--env.headless=false \
--env.enable_cameras=true \
--env.video=true \
--env.video_length=10 \
--env.video_interval=15 \
--env.state_keys=robot_joint_pos \
--env.camera_keys=robot_pov_cam_rgb \
--trust_remote_code=True \
--eval.batch_size=1Evaluate PI0.5
pip install -e ".[pi]"
pip install numpy==1.26.0 # revert numpy to version 1.26PI0.5 requires disabling torch compile for evaluation:
TORCH_COMPILE_DISABLE=1 TORCHINDUCTOR_DISABLE=1 lerobot-eval \
--policy.path=nvidia/pi05-arena-gr1-microwave \
--env.type=isaaclab_arena \
--env.hub_path=nvidia/isaaclab-arena-envs \
--rename_map='{"observation.images.robot_pov_cam_rgb": "observation.images.robot_pov_cam"}' \
--policy.device=cuda \
--env.environment=gr1_microwave \
--env.embodiment=gr1_pink \
--env.object=mustard_bottle \
--env.headless=false \
--env.enable_cameras=true \
--env.video=true \
--env.video_length=15 \
--env.video_interval=15 \
--env.state_keys=robot_joint_pos \
--env.camera_keys=robot_pov_cam_rgb \
--trust_remote_code=True \
--eval.batch_size=1To change the number of parallel environments, use the ```--eval.batch_size``` flag.
What to Expect
During evaluation, you will see a progress bar showing the running success rate:
Stepping through eval batches: 8%|██████▍ | 4/50 [00:45<08:06, 10.58s/it, running_success_rate=25.0%]Video Recording
To enable video recording during evaluation, add the following flags to your command:
--env.video=true \
--env.video_length=15 \
--env.video_interval=15For more details on video recording, see the IsaacLab Recording Documentation.
When running headless with `--env.headless=true`, you must also enable cameras explicitly for camera enabled environments:--env.headless=true --env.enable_cameras=true
Output Directory
Evaluation videos are saved to the output directory with the following structure:
outputs/eval/<date>/<timestamp>_<env>_<policy>/videos/<task>_<env_id>/eval_episode_<n>.mp4For example:
outputs/eval/2026-01-02/14-38-01_isaaclab_arena_smolvla/videos/gr1_microwave_0/eval_episode_0.mp4Training Policies
To learn more about training policies with LeRobot, please refer to the training documentation:
Sample IsaacLab Arena datasets are available on HuggingFace Hub for experimentation:
| Dataset | Description | Frames |
|---|---|---|
| Arena-GR1-Manipulation-Task | GR1 microwave manipulation | ~4K |
| Arena-G1-Loco-Manipulation-Task | G1 loco-manipulation | ~4K |
Environment Configuration
Full Configuration Options
from lerobot.envs.configs import IsaaclabArenaEnv
config = IsaaclabArenaEnv(
# Environment selection
environment="gr1_microwave", # Task environment
embodiment="gr1_pink", # Robot embodiment
object="power_drill", # Object to manipulate
# Simulation settings
episode_length=300, # Max steps per episode
headless=True, # Run without GUI
device="cuda:0", # GPU device
seed=42, # Random seed
# Observation configuration
state_keys="robot_joint_pos", # State observation keys (comma-separated)
camera_keys="robot_pov_cam_rgb", # Camera observation keys (comma-separated)
state_dim=54, # Expected state dimension
action_dim=36, # Expected action dimension
camera_height=512, # Camera image height
camera_width=512, # Camera image width
enable_cameras=True, # Enable camera observations
# Video recording
video=False, # Enable video recording
video_length=100, # Frames per video
video_interval=200, # Steps between recordings
# Advanced
mimic=False, # Enable mimic mode
teleop_device=None, # Teleoperation device
disable_fabric=False, # Disable fabric optimization
enable_pinocchio=True, # Enable Pinocchio for IK
)Using Environment Hub directly for advanced usage
Create a file called test_env_load_arena.py or download from the EnvHub:
import logging
from dataclasses import asdict
from pprint import pformat
import torch
import tqdm
from lerobot.configs import parser
from lerobot.configs.eval import EvalPipelineConfig
@parser.wrap()
def main(cfg: EvalPipelineConfig):
"""Run random action rollout for IsaacLab Arena environment."""
logging.info(pformat(asdict(cfg)))
from lerobot.envs.factory import make_env
env_dict = make_env(
cfg.env,
n_envs=cfg.env.num_envs,
trust_remote_code=True,
)
env = next(iter(env_dict.values()))[0]
env.reset()
for _ in tqdm.tqdm(range(cfg.env.episode_length)):
with torch.inference_mode():
actions = env.action_space.sample()
obs, rewards, terminated, truncated, info = env.step(actions)
if terminated.any() or truncated.any():
obs, info = env.reset()
env.close()
if __name__ == "__main__":
main()Run with:
python test_env_load_arena.py \
--env.environment=g1_locomanip_pnp \
--env.embodiment=gr1_pink \
--env.object=cracker_box \
--env.num_envs=4 \
--env.enable_cameras=true \
--env.seed=1000 \
--env.video=true \
--env.video_length=10 \
--env.video_interval=15 \
--env.headless=false \
--env.hub_path=nvidia/isaaclab-arena-envs \
--env.type=isaaclab_arenaCreating New Environments
First create a new IsaacLab Arena environment by following the IsaacLab Arena Documentation.
Clone our EnvHub repo:
git clone https://huggingface.co/nvidia/isaaclab-arena-envsModify the example_envs.yaml file based on your new environment.
Upload your modified repo to HuggingFace EnvHub.
Your IsaacLab Arena environment code must be locally available during evaluation. Users can clone your environment repository separately, or you can bundle the environment code and assets directly in your EnvHub repo.
Then, when evaluating, use your new environment:
lerobot-eval \
--env.hub_path=<your-env-hub-path>/isaaclab-arena-envs \
--env.environment=<your new environment> \
...other flags...We look forward to your contributions!
Troubleshooting
CUDA out of memory
Reduce batch_size or use a GPU with more VRAM:
--eval.batch_size=1
EULA not accepted
Set environment variables before running:
export ACCEPT_EULA=Y
export PRIVACY_CONSENT=YVideo recording not working
Enable cameras when running headless:
--env.video=true --env.enable_cameras=true --env.headless=truePolicy output dimension mismatch
Ensure action_dim matches your policy:
--env.action_dim=36
libGLU.so.1 Errors during Isaac Sim initialization
Ensure you have the following dependencies installed, this is likely to happen on headless machines.
sudo apt update && sudo apt install -y libglu1-mesa libxt6
See Also
- EnvHub Documentation - General EnvHub usage
- IsaacLab Arena GitHub
- IsaacLab Documentation
LightWheel LW-BenchHub
LightWheel is bringing Lightwheel-Libero-Tasks and Lightwheel-RoboCasa-Tasks with 268 tasks to the LeRobot ecosystem.
LW-BenchHub collects and generates large-scale datasets via teleoperation that comply with the LeRobot specification, enabling out-of-the-box training and evaluation workflows.
With the unified interface provided by EnvHub, developers can quickly build end-to-end experimental pipelines.
Install
Assuming you followed the Installation steps, you can install LW-BenchHub with:
conda install pinocchio -c conda-forge -y
pip install numpy==1.26.0 # revert numpy to version 1.26
sudo apt-get install git-lfs && git lfs install
git clone https://github.com/LightwheelAI/lw_benchhub
git lfs pull # Ensure LFS files (e.g., .usd assets) are downloaded
cd lw_benchhub
pip install -e .For more detailed instructions, please refer to the LW-BenchHub Documentation.
Lightwheel Tasks Dataset
LW-BenchHub datasets are available on HuggingFace Hub:
| Dataset | Description | Tasks | Frames |
|---|---|---|---|
| Lightwheel-Tasks-X7S | X7S LIBERO and RoboCasa | 117 | ~10.3M |
| Lightwheel-Tasks-Double-Piper | Double-Piper LIBERO | 130 | ~6.0M |
| Lightwheel-Tasks-G1-Controller | G1-Controller LIBERO | 62 | ~2.7M |
| Lightwheel-Tasks-G1-WBC | G1-WBC RoboCasa | 32 | ~1.5M |
For training policies, refer to the Training Policies section.
Evaluating Policies
Pre-trained Policies
The following trained policies are available:
| Policy | Architecture | Task | Layout | Robot | Link |
|---|---|---|---|---|---|
| smolvla-double-piper-pnp | SmolVLA | L90K1PutTheBlackBowlOnThePlate | libero-1-1 | DoublePiper-Abs | HuggingFace |
Evaluate SmolVLA
lerobot-eval \
--policy.path=LightwheelAI/smolvla-double-piper-pnp \
--env.type=isaaclab_arena \
--rename_map='{"observation.images.left_hand_camera_rgb": "observation.images.left_hand", "observation.images.right_hand_camera_rgb": "observation.images.right_hand", "observation.images.first_person_camera_rgb": "observation.images.first_person"}' \
--env.hub_path=LightwheelAI/lw_benchhub_env \
--env.kwargs='{"config_path": "configs/envhub/example.yml"}' \
--trust_remote_code=true \
--env.state_keys=joint_pos \
--env.action_dim=12 \
--env.camera_keys=left_hand_camera_rgb,right_hand_camera_rgb,first_person_camera_rgb \
--policy.device=cuda \
--eval.batch_size=10 \
--eval.n_episodes=100Environment Configuration
Evaluation can be quickly launched by modifying the robot, task, and layout settings in the configuration file.
Full Configuration Options
# =========================
# Basic Settings
# =========================
disable_fabric: false
device: cuda:0
sensitivity: 1.0
step_hz: 50
enable_cameras: true
execute_mode: eval
episode_length_s: 20.0 # Episode length in seconds, increase if episodes timeout during eval
# =========================
# Robot Settings
# =========================
robot: DoublePiper-Abs # Robot type, DoublePiper-Abs, X7S-Abs, G1-Controller or G1-Controller-DecoupledWBC
robot_scale: 1.0
# =========================
# Task & Scene Settings
# =========================
task: L90K1PutTheBlackBowlOnThePlate # Task name
scene_backend: robocasa
task_backend: robocasa
debug_assets: null
layout: libero-1-1 # Layout and style ID
sources:
- objaverse
- lightwheel
- aigen_objs
object_projects: []
usd_simplify: false
seed: 42
# =========================
# Object Placement Retry Settings
# =========================
max_scene_retry: 4
max_object_placement_retry: 3
resample_objects_placement_on_reset: true
resample_robot_placement_on_reset: true
# =========================
# Replay Configuration Settings
# =========================
replay_cfgs:
add_camera_to_observation: true
render_resolution: [640, 480]