xlm-roberta-base-sentence-splitter

This model is a fine-tuned version of FacebookAI/xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0078
  • F1: 0.9922

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss F1
No log 1.0 49 0.0028 0.9831
No log 2.0 98 0.0021 0.9877
No log 3.0 147 0.0046 0.9907
No log 4.0 196 0.0014 0.9953
No log 5.0 245 0.0024 0.9892
No log 6.0 294 0.0064 0.9891
No log 7.0 343 0.0015 0.9938
No log 8.0 392 0.0030 0.9922
No log 9.0 441 0.0018 0.9922
No log 10.0 490 0.0106 0.9891
0.0148 11.0 539 0.0030 0.9892
0.0148 12.0 588 0.0026 0.9907
0.0148 13.0 637 0.0024 0.9907
0.0148 14.0 686 0.0022 0.9892
0.0148 15.0 735 0.0085 0.9907
0.0148 16.0 784 0.0019 0.9907
0.0148 17.0 833 0.0021 0.9922
0.0148 18.0 882 0.0106 0.9891
0.0148 19.0 931 0.0118 0.9891
0.0148 20.0 980 0.0047 0.9876
0.0003 21.0 1029 0.0073 0.9891
0.0003 22.0 1078 0.0088 0.9891
0.0003 23.0 1127 0.0152 0.9907
0.0003 24.0 1176 0.0057 0.9922
0.0003 25.0 1225 0.0043 0.9938
0.0003 26.0 1274 0.0047 0.9922
0.0003 27.0 1323 0.0084 0.9953
0.0003 28.0 1372 0.0080 0.9922
0.0003 29.0 1421 0.0078 0.9922
0.0003 30.0 1470 0.0078 0.9922

Framework versions

  • Transformers 4.55.2
  • Pytorch 2.8.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.4
Downloads last month
3
Safetensors
Model size
0.3B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for fax4ever/xlm-roberta-base-sentence-splitter

Finetuned
(3704)
this model

Evaluation results