|
|
--- |
|
|
license: apache-2.0 |
|
|
--- |
|
|
|
|
|
|
|
|
### Key Features |
|
|
|
|
|
- **Codec-Style Patch Selection**: Instead of sampling sparse frames densely (all patches from few frames), OneVision Encoder samples dense frames sparsely (important patches from many frames). |
|
|
- **3D Rotary Position Embedding**: Uses a 4:6:6 split for temporal, height, and width dimensions to capture spatiotemporal relationships. |
|
|
|
|
|
|
|
|
#### Downstream Tasks |
|
|
|
|
|
- Video benchmarks: MVBench, VideoMME, Perception Test |
|
|
- Image understanding: DocVQA, ChartQA, OCRBench |
|
|
- Action recognition: SSv2, UCF101, Kinetics |
|
|
|
|
|
### Quick Start |
|
|
|
|
|
> [!IMPORTANT] |
|
|
> **Transformers Version Compatibility:** |
|
|
> |
|
|
> - ✅ **`transformers==4.57.3`** (Recommended): Works with `AutoModel.from_pretrained()` |
|
|
> - ⚠️ **`transformers>=5.0.0`**: Not currently supported. We are actively working on a fix. |
|
|
|
|
|
> **Note:** This model supports native resolution input. For optimal performance: |
|
|
> |
|
|
> - **Image**: 448×448 resolution (pre-trained) |
|
|
> - **Video**: 224×224 resolution with 256 tokens per frame (pre-trained) |
|
|
|
|
|
```python |
|
|
from transformers import AutoModel, AutoImageProcessor |
|
|
from PIL import Image |
|
|
import torch |
|
|
|
|
|
# Load model and preprocessor |
|
|
model = AutoModel.from_pretrained( |
|
|
"lmms-lab-encoder/onevision-encoder-large", |
|
|
trust_remote_code=True, |
|
|
attn_implementation="flash_attention_2" |
|
|
).to("cuda").eval() |
|
|
|
|
|
preprocessor = AutoImageProcessor.from_pretrained( |
|
|
"lmms-lab-encoder/onevision-encoder-large", |
|
|
trust_remote_code=True |
|
|
) |
|
|
|
|
|
# Image inference: [B, C, H, W] |
|
|
image = Image.open("path/to/your/image.jpg") # Replace with your image path |
|
|
pixel_values = preprocessor(images=image, return_tensors="pt")["pixel_values"].to("cuda") |
|
|
with torch.no_grad(): |
|
|
outputs = model(pixel_values) |
|
|
# outputs.last_hidden_state: [B, num_patches, hidden_size] |
|
|
# outputs.pooler_output: [B, hidden_size] |
|
|
|
|
|
# Video inference: [B, C, T, H, W] with patch_positions |
|
|
num_frames, target_frames = 16, 64 |
|
|
patch_size = 14 |
|
|
# Load video frames and preprocess each frame (replace with your video frame paths) |
|
|
frames = [Image.open(f"path/to/frame_{i}.jpg") for i in range(num_frames)] |
|
|
video_pixel_values = preprocessor(images=frames, return_tensors="pt")["pixel_values"] |
|
|
# Reshape from [T, C, H, W] to [B, C, T, H, W] |
|
|
video = video_pixel_values.unsqueeze(0).permute(0, 2, 1, 3, 4).to("cuda") |
|
|
|
|
|
# Build patch_positions for temporal sampling: [B, num_frames * frame_tokens, 3] |
|
|
frame_pos = torch.linspace(0, target_frames - 1, num_frames).long().cuda() # [T] |
|
|
grid_h, grid_w = video.shape[-2] // patch_size, video.shape[-1] // patch_size # patch grid |
|
|
frame_tokens = grid_h * grid_w |
|
|
|
|
|
t_positions = frame_pos[:, None].repeat(1, frame_tokens).reshape(-1) # [T * frame_tokens] |
|
|
h_positions = torch.arange(grid_h, device="cuda").repeat_interleave(grid_w) |
|
|
h_positions = h_positions.repeat(num_frames) # [T * frame_tokens] |
|
|
w_positions = torch.arange(grid_w, device="cuda").repeat(grid_h) |
|
|
w_positions = w_positions.repeat(num_frames) # [T * frame_tokens] |
|
|
|
|
|
patch_positions = torch.stack([t_positions, h_positions, w_positions], dim=-1).unsqueeze(0) |
|
|
# patch_positions example (256 tokens per frame, 16x16 patch grid): |
|
|
# Each row is [t, h, w]. |
|
|
# First 4 patches of frame 0 (t=0): |
|
|
# patch_positions[0, 0:4, :] -> [[0, 0, 0], [0, 0, 1], [0, 0, 2], [0, 0, 3]] |
|
|
# First 4 patches of frame 1 (t=4): |
|
|
# patch_positions[0, 256:260, :] -> [[4, 0, 0], [4, 0, 1], [4, 0, 2], [4, 0, 3]] |
|
|
|
|
|
with torch.no_grad(): |
|
|
outputs = model(video, patch_positions=patch_positions) |
|
|
``` |
|
|
|
|
|
### Loading from Source Code |
|
|
|
|
|
```bash |
|
|
git clone https://github.com/EvolvingLMMs-Lab/OneVision-Encoder.git |
|
|
cd OneVision-Encoder |
|
|
pip install -e . |
|
|
``` |
|
|
|
|
|
```python |
|
|
from onevision_encoder import OneVisionEncoderModel, OneVisionEncoderConfig |
|
|
from transformers import AutoImageProcessor |
|
|
model = OneVisionEncoderModel.from_pretrained( |
|
|
"lmms-lab-encoder/onevision-encoder-large", |
|
|
trust_remote_code=True, |
|
|
attn_implementation="flash_attention_2" |
|
|
).to("cuda").eval() |
|
|
preprocessor = AutoImageProcessor.from_pretrained( |
|
|
"lmms-lab-encoder/onevision-encoder-large", |
|
|
trust_remote_code=True |
|
|
) |
|
|
``` |
|
|
|
|
|
### LMM Probe Results |
|
|
|
|
|
Training on a mixed dataset of 740K samples from LLaVA-OneVision and 800K samples from LLaVA-Video SFT. The training pipeline proceeds directly to Stage 2 fine-tuning. We adopt a streamlined native-resolution strategy inspired by LLaVA-OneVision: when the input frame resolution matches the model's native input size, it is fed directly—without tiling or cropping—to evaluate the ViT's native resolution capability. |
|
|
|
|
|
<p align="center"> |
|
|
<picture> |
|
|
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/anxiangsir/asset/main/OneVision/probe_lmm_github_dark_fixed.png"> |
|
|
<source media="(prefers-color-scheme: light)" srcset="https://raw.githubusercontent.com/anxiangsir/asset/main/OneVision/probe_lmm_github_light.png"> |
|
|
<img alt="LMM Probe Results" src="https://raw.githubusercontent.com/anxiangsir/asset/main/OneVision/probe_lmm_github_light.png" width="800" style="max-width: 100%;"> |
|
|
</picture> |
|
|
</p> |
|
|
|
|
|
### Model Card |
|
|
|
|
|
| Property | Value | |
|
|
| ----------------------------- | --------------------------------- | |
|
|
| **Model Type** | Vision Transformer (ViT) | |
|
|
| **Architecture** | HEVC-Style Vision Transformer | |
|
|
| **Hidden Size** | 1024 | |
|
|
| **Intermediate Size** | 4096 | |
|
|
| **Number of Layers** | 24 | |
|
|
| **Number of Attention Heads** | 16 | |
|
|
| **Patch Size** | 14 | |
|
|
| **Image Resolution** | 448×448 (pre-trained) | |
|
|
| **Video Resolution** | 224×224 with 256 tokens per frame | |
|
|
| **Positional Encoding** | 3D RoPE (4:6:6 split for T:H:W) | |
|
|
| **Normalization** | Layer Normalization | |
|
|
| **Activation Function** | GELU | |
|
|
| **License** | Apache 2.0 | |
|
|
|