Qwen2.5-7B-MathSoup
๐ฒ Model Soup created using weighted averaging based on Meta's Souper-Model.
Weights
- math: 60%
- general: 40%
Expected Performance (Linear Prediction)
| Benchmark | Predicted Score |
|---|---|
| GSM8K | 88.3% |
| HumanEval | 59.5% |
Note: Actual performance may differ due to weight interference effects.
Component Models
| Model | GSM8K | HumanEval |
|---|---|---|
| Qwen2.5-7B-Instruct | 85.4% | 70.1% |
| Qwen2.5-Coder-7B-Instruct | 60.4% | 88.4% |
| Qwen2.5-Math-7B-Instruct | 90.3% | 52.4% |
Usage
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("researchaudio/Qwen2.5-7B-MathSoup")
tokenizer = AutoTokenizer.from_pretrained("researchaudio/Qwen2.5-7B-MathSoup")
messages = [{"role": "user", "content": "Solve: What is 15% of 80?"}]
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=256)
print(tokenizer.decode(outputs[0]))
Citation
@misc{soupermodel2025,
title={Souper-Model: How Simple Arithmetic Unlocks State-of-the-Art LLM Performance},
author={Shalini Maiti and others},
year={2025},
url={https://arxiv.org/abs/2511.13254},
}
- Downloads last month
- 8