Belarusian - Wikilangs Models

Comprehensive Research Report & Full Ablation Study

This repository contains NLP models trained and evaluated by Wikilangs, specifically on Belarusian Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.

πŸ“‹ Repository Contents

Models & Assets

  • Tokenizers (8k, 16k, 32k, 64k)
  • N-gram models (2, 3, 4, 5-gram)
  • Markov chains (context of 1, 2, 3, 4 and 5)
  • Subword N-gram and Markov chains
  • Embeddings in various sizes and dimensions (aligned and unaligned)
  • Language Vocabulary
  • Language Statistics

Performance Dashboard

Analysis and Evaluation


1. Tokenizer Evaluation

Tokenizer Compression

Tokenizer Fertility

Tokenizer OOV

Total Tokens

Results

Vocab Size Compression Avg Token Len UNK Rate Total Tokens
8k 3.599x 3.60 0.0489% 286,335
16k 4.042x 4.05 0.0549% 254,965
32k 4.455x 4.46 0.0605% 231,292
64k 4.771x πŸ† 4.78 0.0648% 215,975

Tokenization Examples

Below are sample sentences tokenized with each vocabulary size:

Sample 1: Π›Π°Π½Π°Π²Ρ‹Ρ‡Ρ‹ () β€” вёска ў Бамбірскім Ρ€Π°Ρ‘Π½Π΅ Π›ΡŒΠ²ΠΎΡžΡΠΊΠ°ΠΉ вобласці Π£ΠΊΡ€Π°Ρ–Π½Ρ‹. ΠšΡ€Ρ‹Π½Ρ–Ρ†Ρ‹ ΠΏΡƒΠ½ΠΊΡ‚...

Vocab Tokens Count
8k ▁ла Π½Π° Π²Ρ‹ Ρ‡Ρ‹ ▁() ▁— ▁вёска β–Ρž ▁сам Π±Ρ– ... (+12 more) 22
16k ▁ла Π½Π° Π²Ρ‹ Ρ‡Ρ‹ ▁() ▁— ▁вёска β–Ρž ▁сам Π±Ρ– ... (+12 more) 22
32k ▁ла Π½Π° Π²Ρ‹Ρ‡Ρ‹ ▁() ▁— ▁вёска β–Ρž ▁самбі рскім ▁раёнС ... (+9 more) 19
64k ▁лана Π²Ρ‹Ρ‡Ρ‹ ▁() ▁— ▁вёска β–Ρž ▁самбірскім ▁раёнС β–Π»ΡŒΠ²ΠΎΡžΡΠΊΠ°ΠΉ ▁вобласці ... (+6 more) 16

Sample 2: ΠœΠ°Ρ€ΡΠΎ () β€” французскаС ΠΏΡ€ΠΎΠ·Π²Ρ–ΡˆΡ‡Π°. Вядомыя Π½ΠΎΡΡŒΠ±Ρ–Ρ‚Ρ‹ ΠœΠ°Ρ€ΡΠ΅Π»ΡŒ ΠœΠ°Ρ€ΡΠΎ, французскі Π°Ρ€Ρ‚...

Vocab Tokens Count
8k ▁мар со ▁() ▁— ▁француз скаС β–ΠΏΡ€ΠΎΠ·Π²Ρ–ΡˆΡ‡Π° . ▁вядомыя β–Π½ΠΎΡΡŒΠ±Ρ–Ρ‚Ρ‹ ... (+17 more) 27
16k ▁мар со ▁() ▁— ▁француз скаС β–ΠΏΡ€ΠΎΠ·Π²Ρ–ΡˆΡ‡Π° . ▁вядомыя β–Π½ΠΎΡΡŒΠ±Ρ–Ρ‚Ρ‹ ... (+16 more) 26
32k ▁мар со ▁() ▁— ▁француз скаС β–ΠΏΡ€ΠΎΠ·Π²Ρ–ΡˆΡ‡Π° . ▁вядомыя β–Π½ΠΎΡΡŒΠ±Ρ–Ρ‚Ρ‹ ... (+15 more) 25
64k ▁мар со ▁() ▁— ▁французскаС β–ΠΏΡ€ΠΎΠ·Π²Ρ–ΡˆΡ‡Π° . ▁вядомыя β–Π½ΠΎΡΡŒΠ±Ρ–Ρ‚Ρ‹ β–ΠΌΠ°Ρ€ΡΠ΅Π»ΡŒ ... (+14 more) 24

Sample 3: Π’ΠΎΡ€Π°Π½Ρ–Ρž () β€” вёска ў Π“Π°Ρ€Π°Π΄ΡΠ½ΠΊΡ–ΡžΡΠΊΡ–ΠΌ Ρ€Π°Ρ‘Π½Π΅ Π†Π²Π°Π½Π°-Π€Ρ€Π°Π½ΠΊΠΎΡžΡΠΊΠ°ΠΉ вобласці Π£ΠΊΡ€Π°Ρ–Π½Ρ‹. ΠšΡ€...

Vocab Tokens Count
8k ▁вора Π½Ρ–Ρž ▁() ▁— ▁вёска β–Ρž ▁гарад эн ΠΊΡ– ΡžΡΠΊΡ–ΠΌ ... (+21 more) 31
16k ▁вора Π½Ρ–Ρž ▁() ▁— ▁вёска β–Ρž ▁гарад эн ΠΊΡ–ΡžΡΠΊΡ–ΠΌ ▁раёнС ... (+18 more) 28
32k ▁вора Π½Ρ–Ρž ▁() ▁— ▁вёска β–Ρž ▁гарад эн ΠΊΡ–ΡžΡΠΊΡ–ΠΌ ▁раёнС ... (+17 more) 27
64k ▁вора Π½Ρ–Ρž ▁() ▁— ▁вёска β–Ρž ▁гарад эн ΠΊΡ–ΡžΡΠΊΡ–ΠΌ ▁раёнС ... (+17 more) 27

Key Findings

  • Best Compression: 64k achieves 4.771x compression
  • Lowest UNK Rate: 8k with 0.0489% unknown tokens
  • Trade-off: Larger vocabularies improve compression but increase model size
  • Recommendation: 32k vocabulary provides optimal balance for production use

2. N-gram Model Evaluation

N-gram Perplexity

N-gram Unique

N-gram Coverage

Results

N-gram Variant Perplexity Entropy Unique N-grams Top-100 Coverage Top-1000 Coverage
2-gram Word 115,602 16.82 1,101,685 11.4% 25.2%
2-gram Subword 453 πŸ† 8.82 15,623 55.9% 96.8%
3-gram Word 178,210 17.44 1,692,602 11.7% 25.1%
3-gram Subword 4,191 12.03 146,010 18.7% 59.5%
4-gram Word 289,150 18.14 2,823,610 9.4% 24.9%
4-gram Subword 25,327 14.63 932,448 8.0% 29.4%
5-gram Word 212,986 17.70 2,118,708 8.7% 25.2%
5-gram Subword 104,621 16.67 3,234,164 4.5% 17.2%

Top 5 N-grams by Size

2-grams (Word):

Rank N-gram Count
1 0 10 188,589
2 10 0 184,434
3 0 09 178,217
4 09 0 172,685
5 Ρƒ Π³ΠΎΠ΄Π·Π΅ 141,829

3-grams (Word):

Rank N-gram Count
1 0 10 0 183,055
2 0 09 0 171,685
3 0 11 0 133,047
4 0 08 0 125,665
5 0 07 0 84,761

4-grams (Word):

Rank N-gram Count
1 0 44 0 10 28,229
2 44 0 10 0 27,892
3 0 47 0 10 27,125
4 47 0 10 0 26,709
5 0 50 0 10 26,628

5-grams (Word):

Rank N-gram Count
1 0 44 0 10 0 27,892
2 0 47 0 10 0 26,707
3 0 50 0 10 0 26,249
4 0 45 0 10 0 25,524
5 0 49 0 10 0 24,716

2-grams (Subword):

Rank N-gram Count
1 Π° _ 7,411,164
2 Π½ Π° 5,858,867
3 Ρ€ Π° 5,764,007
4 ΠΊ Π° 4,983,576
5 _ ΠΏ 4,779,657

3-grams (Subword):

Rank N-gram Count
1 _ ΠΏ Π° 2,113,963
2 _ 0 , 1,872,411
3 _ Π½ Π° 1,678,358
4 Π½ Π° _ 1,430,853
5 _ ΠΏ Ρ€ 1,351,115

4-grams (Subword):

Rank N-gram Count
1 Π° Π³ Π° _ 985,197
2 _ ΠΏ Ρ€ Π° 752,091
3 _ Π³ ΠΎ Π΄ 714,067
4 _ Π½ Π° _ 694,537
5 ΠΊ Π° ΠΉ _ 548,513

5-grams (Subword):

Rank N-gram Count
1 ΠΊ Π° Π³ Π° _ 467,479
2 с к а й _ 409,977
3 с к а г а 393,058
4 Π± Π΅ Π» Π° Ρ€ 392,561
5 Π΅ Π» Π° Ρ€ Ρƒ 392,043

Key Findings

  • Best Perplexity: 2-gram (subword) with 453
  • Entropy Trend: Decreases with larger n-grams (more predictable)
  • Coverage: Top-1000 patterns cover ~17% of corpus
  • Recommendation: 4-gram or 5-gram for best predictive performance

3. Markov Chain Evaluation

Markov Entropy

Markov Contexts

Markov Branching

Results

Context Variant Avg Entropy Perplexity Branching Factor Unique Contexts Predictability
1 Word 0.9802 1.973 10.66 1,600,794 2.0%
1 Subword 0.4743 1.389 3.96 16,475 52.6%
2 Word 0.3132 1.242 1.95 17,028,048 68.7%
2 Subword 0.6391 1.557 4.81 65,298 36.1%
3 Word 0.1128 1.081 1.23 33,045,925 88.7%
3 Subword 0.8191 1.764 4.91 313,830 18.1%
4 Word 0.0455 πŸ† 1.032 1.08 40,473,004 95.4%
4 Subword 0.7606 1.694 3.75 1,541,159 23.9%

Generated Text Samples (Word-based)

Below are text samples generated from each word-based Markov chain model:

Context Size 1:

  1. 0 06 0 1 мінскай вобласці бСларусі ў Ρ€Π°Ρ‘Π½Π΅ віцСбскай Π³ΡƒΠ±Π΅Ρ€Π½Ρ– зСмскага самакіравання якая выказалася ...
  2. Ρ– дзіцячы сад ΠΊΠ°Ρ€Π°Π»Π΅Π²Ρ‹ якія Π²Ρ‹ΠΌΠ΅Π½ΡŒΠ²Π°Π»Ρ– ў эдТбастанС Π±Ρ–Ρ€ΠΌΡ–Π½Π³Π΅ΠΌ сіці манчэстэр ΡŽΠ½Π°ΠΉΡ‚ΡΠ΄ Π΄Π·Π΅ адносна Π½Π΅Π²...
  3. Ρƒ Π³ΠΎΠ΄Π·Π΅ стала ΡžΡΠΊΠΎΡΠ½Ρ‹ΠΌ выглядзС ΡˆΠΎΡƒ consecinΘ›a istoricΔƒ sibiu mitropolitul andrei yahorau alena ΠΌΠ°Ρ‘ ...

Context Size 2:

  1. 0 10 0 34 0 12 0 38 0 11 0 53 0 09 0 41 0
  2. 10 0 55 0 09 0 46 0 10 0 63 0 08 0 75 0 07
  3. 0 09 0 54 0 09 0 47 0 10 0 48 0 10 0 45 0

Context Size 3:

  1. 0 10 0 37 0 12 0 45 0 10 0 60 0 08 0 58 0 09
  2. 0 09 0 54 0 09 0 50 0 09 so a 0 67 0 08 0 79
  3. 0 11 0 47 0 10 0 54 0 09 0 48 0 10 0 43 0 11

Context Size 4:

  1. 0 44 0 10 0 40 0 11 0 54 0 32 0 45 0 32 0 56 0
  2. 44 0 10 0 47 0 10 0 48 0 10 0 48 0 10 0 57 0 06
  3. 0 47 0 10 0 54 0 09 0 87 0 06 sbbc 0 78 0 07 0 47

Generated Text Samples (Subword-based)

Below are text samples generated from each subword-based Markov chain model:

Context Size 1:

  1. _Π±Π΅ΠΊΒ»_ΠΌΠ°Π½ΠΎ_szk._
  2. Π°Ρ‘Ρ€Π»Π°Ρ€Π½Ρ‹ΠΊΠ»ΡŒΠ±Π΅Π½Ρ–Ρ†
  3. Π½Π°Π³Ρ€ΠΊΠ°Ρž_Π²Π°ΠΉ_stol

Context Size 2:

  1. Π°_Π²Ρ‹Π»ΠΊΡ–_ў_ΠΏΠ°Ρ€Ρ‹ΡˆΡˆΠ°
  2. Π½Π°_Π°ΠΏΡ–Π»Ρ–ΠΊ_Π²Ρ‹,_які
  3. Ρ€Π°Ρž_Π·Π²Π°Π³Π°Ρ€ΡΠΊΠ°Ρž_Π²Ρ‹

Context Size 3:

  1. _ΠΏΠ°ΠΌΠΊΠ°:_ю._тайскаг
  2. _0,53_0,42_0,43_0,
  3. _Π½Π°ΡΡ†ΡŽ_Ρ–_Ρ‚Π°Π²Ρ–Ρ‡_см.

Context Size 4:

  1. Π°Π³Π°_заняў_Ρ–_ΠΏΠ°Π²Π΅Π΄Π°,
  2. _ΠΏΡ€Π°ΡΡ–ΠΉΡΠΊΠ°Ρž_ΡΡƒΠΏΠΎΠ»ΡŒΡ
  3. _Π³ΠΎΠ΄Π·Π΅_ΠΏΡ€Ρ‹Π΅Π·Π΄Π°_Ρ„Ρ–Π»ΡŒ

Key Findings

  • Best Predictability: Context-4 (word) with 95.4% predictability
  • Branching Factor: Decreases with context size (more deterministic)
  • Memory Trade-off: Larger contexts require more storage (1,541,159 contexts)
  • Recommendation: Context-3 or Context-4 for text generation

4. Vocabulary Analysis

Zipf's Law

Top Words

Coverage Curve

Statistics

Metric Value
Vocabulary Size 741,819
Total Tokens 55,243,342
Mean Frequency 74.47
Median Frequency 4
Frequency Std Dev 3873.91

Most Common Words

Rank Word Frequency
1 0 1,944,910
2 Ρ– 1,331,350
3 Ρƒ 1,238,468
4 ў 1,161,043
5 Π· 862,221
6 Π½Π° 708,262
7 Π³ΠΎΠ΄Π° 367,568
8 Π΄Π° 290,434
9 Π³ΠΎΠ΄Π·Π΅ 258,378
10 10 239,964

Least Common Words (from vocabulary)

Rank Word Frequency
1 дСвяткС 2
2 Π΄ΡΠΊΡƒΠ½Π°Ρž 2
3 iovine 2
4 Ρ–Π°Π²Ρ–Π½ 2
5 Π°Ρ‘Π²Ρ–Π½Ρƒ 2
6 дТэніка 2
7 мэрылінам 2
8 ΡΠ°Ρ€Π΄ΡΡˆΠ½Π°Ρ 2
9 Ρ–Π²Π°ΡΡŽ 2
10 стСцСнко 2

Zipf's Law Analysis

Metric Value
Zipf Coefficient 0.9714
RΒ² (Goodness of Fit) 0.997383
Adherence Quality excellent

Coverage Analysis

Top N Words Coverage
Top 100 29.3%
Top 1,000 50.6%
Top 5,000 67.4%
Top 10,000 74.5%

Key Findings

  • Zipf Compliance: RΒ²=0.9974 indicates excellent adherence to Zipf's law
  • High Frequency Dominance: Top 100 words cover 29.3% of corpus
  • Long Tail: 731,819 words needed for remaining 25.5% coverage

5. Word Embeddings Evaluation

Embedding Isotropy

Similarity Matrix

t-SNE Words

t-SNE Sentences

5.1 Cross-Lingual Alignment

Alignment Quality

Multilingual t-SNE

5.2 Model Comparison

Model Dimension Isotropy Semantic Density Alignment R@1 Alignment R@10
mono_32d 32 0.6096 0.3533 N/A N/A
mono_64d 64 0.6408 0.2859 N/A N/A
mono_128d 128 0.6444 0.2271 N/A N/A
aligned_32d 32 0.6096 0.3568 0.0440 0.3040
aligned_64d 64 0.6408 0.2908 0.1380 0.5080
aligned_128d 128 0.6444 πŸ† 0.2362 0.2300 0.6220

Key Findings

  • Best Isotropy: aligned_128d with 0.6444 (more uniform distribution)
  • Semantic Density: Average pairwise similarity of 0.2917. Lower values indicate better semantic separation.
  • Alignment Quality: Aligned models achieve up to 23.0% R@1 in cross-lingual retrieval.
  • Recommendation: 128d aligned for best cross-lingual performance

6. Morphological Analysis (Experimental)

This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.

6.1 Productivity & Complexity

Metric Value Interpretation Recommendation
Productivity Index 5.000 High morphological productivity Reliable analysis
Idiomaticity Gap 0.467 High formulaic/idiomatic content -

6.2 Affix Inventory (Productive Units)

These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.

Productive Prefixes

Prefix Examples
-ΠΏΠ° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΠΉ, ΠΏΠ°Π΄Π°ΠΏΠ»Ρ‘ΠΊΠ°, ΠΏΠ°Π΄ΠΊΡ–Π΄Π°Π½Π½Ρ–
-ΠΊΠ° ΠΊΠ°Π½Π°Π²Π°Π»Π°Π²Π°, ΠΊΠ°Ρ„Π΅Π΄Ρ€Π°ΠΌΡ–, калСснікава
-ΠΏΡ€ ΠΏΡ€Ρ‹ΡˆΡ‡ΡΠΏΠ°ΡžΡˆΡ‡Ρ‹Π½Π°, прыпяцкі, ΠΏΡ€Π°ΠΏΡ–Ρ‚ΠΊΡ–

Productive Suffixes

Suffix Examples
-Π° Π³Π°Ρ€ΠΎΡ…Π°, ΠΏΡ€Ρ‹ΡˆΡ‡ΡΠΏΠ°ΡžΡˆΡ‡Ρ‹Π½Π°, ΠΏΠ°Π΄Π°ΠΏΠ»Ρ‘ΠΊΠ°
-Π³Π° ΠΏΠ°ΡžΠ΄Π½Ρ‘Π²Π°Π³Π°, Ρ–ΠΏΠ°Ρ†Π΅ΡžΡΠΊΠ°Π³Π°, ΠΌΡ–ΠΆΠ°Π·Ρ‘Ρ€Π½Π°Π³Π°
-ΠΊΡ– лСанінскі, прыпяцкі, ΠΏΡ€Π°ΠΏΡ–Ρ‚ΠΊΡ–
-Π°ΠΉ кіянкай, ΠΎΠ»ΡŒΡΡ‚ΡΡ€ΡΠΊΠ°ΠΉ, найноўшай
-Π°Π³Π° ΠΏΠ°ΡžΠ΄Π½Ρ‘Π²Π°Π³Π°, Ρ–ΠΏΠ°Ρ†Π΅ΡžΡΠΊΠ°Π³Π°, ΠΌΡ–ΠΆΠ°Π·Ρ‘Ρ€Π½Π°Π³Π°
-ая Ρ€ΡƒΠ΄ΡΡ€Π°Π»ΡŒΠ½Π°Ρ, прымСнСная, ΡΠ²Π°Π»ΡŒΠ±Π°Ρ€Π΄ΡΠΊΠ°Ρ
-аў ΡˆΠ°ΠΊΡ–Ρ€Π°Π²Π°Ρž, Π²Ρ–Π³Π°Ρž, ΡˆΡƒΠΊΠ°Π»ΡŒΠ½Ρ–ΠΊΠ°Ρž
-Π½Π° ΠΏΡ€Ρ‹ΡˆΡ‡ΡΠΏΠ°ΡžΡˆΡ‡Ρ‹Π½Π°, нСпэсрэдна, скампанавана

6.3 Bound Stems (Lexical Roots)

Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.

Stem Cohesion Substitutability Examples
анск 1.51x 1027 contexts ганск, данск, канск
нска 1.55x 503 contexts унска, янска, інская
насц 1.79x 190 contexts насцС, насця, Π½Π°ΡΡ†ΡŽ
асСл 2.08x 87 contexts асСль, асСлі, расСл
Π΅Π»Π°Ρ€ 2.39x 47 contexts Π±Π΅Π»Π°Ρ€, сСлар, Π³Π΅Π»Π°Ρ€
ўска 1.58x 236 contexts Сўска, Ρ–ΡžΡΠΊΠ°, Ρ‘ΡžΡΠΊΠ°Π΅
Π°Π΅Ρ†Ρ† 2.20x 48 contexts ΠΌΠ°Π΅Ρ†Ρ†Π°, ΠΊΠ°Π΅Ρ†Ρ†Π°, Π»Π°Π΅Ρ†Ρ†Π°
Ρ‚Ρ‹Ρ‡Π½ 1.49x 233 contexts этычны, стычня, этычна
нскі 1.34x 416 contexts Снскі, янскі, інскі
Сльн 1.32x 342 contexts Сльню, Сльна, Π΅Π»ΡŒΠ½Ρ–
Ρ…ΠΎΠ΄Π· 1.47x 182 contexts Ρ…ΠΎΠ΄Π·Ρ–, Ρ…ΠΎΠ΄Π·Π°, Ρ…ΠΎΠ΄Π·ΡŒ
ання 1.47x 174 contexts рання, вання, арання

6.4 Affix Compatibility (Co-occurrence)

This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.

Prefix Suffix Frequency Examples
-ΠΏΠ° -Π° 57 words ΠΏΠ°Π΄Π»Ρ–Ρ‡Π²Π°ΡŽΡ†Ρ†Π°, ΠΏΠ°Π²Π΅Ρ‚Π°
-ΠΊΠ° -Π° 51 words ΠΊΠ°Ρ€Π°Ρ…Π°Π½Π°, ΠΊΠ°Ρ€Π°Π»ΡŒΠΊΠΎΠ²Π°
-ΠΏΡ€ -Π° 33 words прынцэса, ΠΏΡ€Π°Ρ†ΡΠ³Π²Π°ΡŽΡ†Ρ†Π°
-ΠΏΠ° -ыя 14 words падпруТныя, пасярэбраныя
-ΠΏΠ° -Π°ΠΉ 14 words ΠΏΠ°ΡžΠ»Π°Π²Ρ–Ρ†ΠΊΠ°ΠΉ, ΠΏΠ°Π³Ρ–Π±Π΅Π»ΡŒΠ½Π°ΠΉ
-ΠΊΠ° -ая 14 words карнуая, карэспандэнцкая
-ΠΊΠ° -Π½Π° 13 words ΠΊΠ°Ρ€Π°Ρ…Π°Π½Π°, ΠΊΠ°Π΄Ρ€Ρ‹Π½Π°
-ΠΊΠ° -Π³Π° 13 words калСвальскага, каларадскага
-ΠΏΠ° -ΠΊΡ– 13 words ΠΏΠ°ΠΊΡƒΠΏΠΊΡ–, ΠΏΠ°Π»Π°Ρ‡Π°Π½ΠΊΡ–
-ΠΏΠ° -Π³Π° 13 words ΠΏΠ°ΠΏΠ°Π»Π΅Π½Π°Π³Π°, ΠΏΠ°Π»Π°Ρ‚ΠΊΠ°Π²Π°Π³Π°

6.5 Recursive Morpheme Segmentation

Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).

Word Suggested Split Confidence Stem
Π³Π°Π»Ρ–Ρ†Ρ‹Π½Π°ΡžΠΊΠ° Π³Π°Π»Ρ–Ρ†Ρ‹Π½-аў-ΠΊΠ° 6.0 Π³Π°Π»Ρ–Ρ†Ρ‹Π½
ΠΏΠ΅Ρ€Π°ΠΊΠ»Π°Π΄Ρ‡Ρ‹ΠΊΠ°Ρž ΠΏΠ΅Ρ€Π°ΠΊΠ»Π°Π΄Ρ‡Ρ‹ΠΊ-аў 4.5 ΠΏΠ΅Ρ€Π°ΠΊΠ»Π°Π΄Ρ‡Ρ‹ΠΊ
Π·Ρ–ΠΊΡƒΡ€Π°Ρ‚Π°Ρž Π·Ρ–ΠΊΡƒΡ€Π°Ρ‚-аў 4.5 Π·Ρ–ΠΊΡƒΡ€Π°Ρ‚
астраблСмай астраблСм-Π°ΠΉ 4.5 астраблСм
Π°Π²Ρ–ΡΠ°Ρ‚Ρ€Π°Π΄Π°Ρž авіяатрад-аў 4.5 авіяатрад
Π³ΡƒΠΊΠ°Ρ€Π°Π΄Π°Ρž Π³ΡƒΠΊΠ°Ρ€Π°Π΄-аў 4.5 Π³ΡƒΠΊΠ°Ρ€Π°Π΄
Ρ†Ρ‹Ρ€ΡƒΠ»ΡŒΠ½Ρ–ΠΊΠ°Ρž Ρ†Ρ‹Ρ€ΡƒΠ»ΡŒΠ½Ρ–ΠΊ-аў 4.5 Ρ†Ρ‹Ρ€ΡƒΠ»ΡŒΠ½Ρ–ΠΊ
Π°Π΄ΠΏΡ€Π°ΡžΡˆΡ‡Ρ‹ΠΊΠ°Ρž Π°Π΄ΠΏΡ€Π°ΡžΡˆΡ‡Ρ‹ΠΊ-аў 4.5 Π°Π΄ΠΏΡ€Π°ΡžΡˆΡ‡Ρ‹ΠΊ
Ρ€ΡΠ΄ΡΠΌΠΏΡ‚Π°Ρ€Ρ‹ΡΡ‚Π°Ρž рэдэмптарыст-аў 4.5 рэдэмптарыст
ΠΊΡƒΠ»Ρ–Π½Π°Ρ€Π°Ρž ΠΊΡƒΠ»Ρ–Π½Π°Ρ€-аў 4.5 ΠΊΡƒΠ»Ρ–Π½Π°Ρ€
Ρ–Π½ΡŒΡ–Π³Π΅ΡΠ°Ρž Ρ–Π½ΡŒΡ–Π³Π΅Ρ-аў 4.5 Ρ–Π½ΡŒΡ–Π³Π΅Ρ
Π³ΡΠ»Ρ‚Π°Ρ…Ρ‚Π°Ρž гэлтахт-аў 4.5 гэлтахт
рэгістрацыйна рэгістрацый-Π½Π° 4.5 рэгістрацый
Ρ‡Π°ΠΏΠ°Π΅ΡžΡΠΊΠ°Π³Π° Ρ‡Π°ΠΏΠ°Π΅ΡžΡΠΊ-Π°Π³Π° 4.5 Ρ‡Π°ΠΏΠ°Π΅ΡžΡΠΊ
Π³Ρ€ΡƒΠ½Ρ‚ΠΎΡžΠΊΠ° Π³Ρ€ΡƒΠ½Ρ‚ΠΎΡž-ΠΊΠ° 4.5 Π³Ρ€ΡƒΠ½Ρ‚ΠΎΡž

6.6 Linguistic Interpretation

Automated Insight: The language Belarusian shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.

Note on Idiomaticity: The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts.


7. Summary & Recommendations

Performance Dashboard

Production Recommendations

Component Recommended Rationale
Tokenizer 64k BPE Best compression (4.77x)
N-gram 2-gram Lowest perplexity (453)
Markov Context-4 Highest predictability (95.4%)
Embeddings 100d Balanced semantic capture and isotropy

Appendix: Metrics Glossary & Interpretation Guide

This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.

Tokenizer Metrics

Compression Ratio

Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.

Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.

What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.

Average Token Length (Fertility)

Definition: Mean number of characters per token produced by the tokenizer.

Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.

What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.

Unknown Token Rate (OOV Rate)

Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.

Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.

What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.

N-gram Model Metrics

Perplexity

Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.

Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.

What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.

Entropy

Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.

Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.

What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.

Coverage (Top-K)

Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.

Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.

What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.

Markov Chain Metrics

Average Entropy

Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.

Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).

What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.

Branching Factor

Definition: Average number of unique next tokens observed for each context.

Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).

What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.

Predictability

Definition: Derived metric: (1 - normalized_entropy) Γ— 100%. Indicates how deterministic the model's predictions are.

Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.

What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.

Vocabulary & Zipf's Law Metrics

Zipf's Coefficient

Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.

Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.

What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.

RΒ² (Coefficient of Determination)

Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.

Intuition: RΒ² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.

What to seek: RΒ² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.

Vocabulary Coverage

Definition: Cumulative percentage of corpus tokens accounted for by the top N words.

Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.

What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.

Word Embedding Metrics

Isotropy

Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.

Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.

What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.

Average Norm

Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.

Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.

What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).

Cosine Similarity

Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).

Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.

What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.

t-SNE Visualization

Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.

Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.

What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.

General Interpretation Guidelines

  1. Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
  2. Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
  3. Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
  4. Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
  5. Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.

Visualizations Index

Visualization Description
Tokenizer Compression Compression ratios by vocabulary size
Tokenizer Fertility Average token length by vocabulary
Tokenizer OOV Unknown token rates
Tokenizer Total Tokens Total tokens by vocabulary
N-gram Perplexity Perplexity by n-gram size
N-gram Entropy Entropy by n-gram size
N-gram Coverage Top pattern coverage
N-gram Unique Unique n-gram counts
Markov Entropy Entropy by context size
Markov Branching Branching factor by context
Markov Contexts Unique context counts
Zipf's Law Frequency-rank distribution with fit
Vocab Frequency Word frequency distribution
Top 20 Words Most frequent words
Vocab Coverage Cumulative coverage curve
Embedding Isotropy Vector space uniformity
Embedding Norms Vector magnitude distribution
Embedding Similarity Word similarity heatmap
Nearest Neighbors Similar words for key terms
t-SNE Words 2D word embedding visualization
t-SNE Sentences 2D sentence embedding visualization
Position Encoding Encoding method comparison
Model Sizes Storage requirements
Performance Dashboard Comprehensive performance overview

About This Project

Data Source

Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.

Project

A project by Wikilangs - Open-source NLP models for every Wikipedia language.

Maintainer

Omar Kamali - Omneity Labs

Citation

If you use these models in your research, please cite:

@misc{wikilangs2025,
  author = {Kamali, Omar},
  title = {Wikilangs: Open NLP Models for Wikipedia Languages},
  year = {2025},
  doi = {10.5281/zenodo.18073153},
  publisher = {Zenodo},
  url = {https://huggingface.co/wikilangs}
  institution = {Omneity Labs}
}

License

MIT License - Free for academic and commercial use.

Links


Generated by Wikilangs Models Pipeline

Report Date: 2026-01-06 15:57:39

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Dataset used to train wikilangs/be