Gothic - Wikilangs Models

Comprehensive Research Report & Full Ablation Study

This repository contains NLP models trained and evaluated by Wikilangs, specifically on Gothic Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.

πŸ“‹ Repository Contents

Models & Assets

  • Tokenizers (8k, 16k, 32k, 64k)
  • N-gram models (2, 3, 4, 5-gram)
  • Markov chains (context of 1, 2, 3, 4 and 5)
  • Subword N-gram and Markov chains
  • Embeddings in various sizes and dimensions (aligned and unaligned)
  • Language Vocabulary
  • Language Statistics

Performance Dashboard

Analysis and Evaluation


1. Tokenizer Evaluation

Tokenizer Compression

Tokenizer Fertility

Tokenizer OOV

Total Tokens

Results

Vocab Size Compression Avg Token Len UNK Rate Total Tokens
8k 2.525x 2.53 0.0669% 260,190
16k 2.674x 2.68 0.0708% 245,725
32k 2.884x πŸ† 2.89 0.0764% 227,819

Tokenization Examples

Below are sample sentences tokenized with each vocabulary size:

Sample 1: 𐌺𐌰𐌽𐌰𐌳𐌰 πŒΉπƒπ„ 𐌻𐌰𐌽𐌳 𐌰𐌽𐌰 πŒ°πŒΉπ‚πŒΈπŒ°πŒ³πŒ°πŒΉπŒ»πŒ°πŒΉ πŒ½πŒ°πŒΏπ‚πŒΈπŒ°πŒΌπŒ°πŒΉπ‚πŒΉπŒΊπŒ° 𐌾𐌰𐌷 πŒ²πŒ°πŒΌπŒ°π‚πŒΊπ‰πŒΈ πŒ²πŒ°πŒ²πŒ°πŒ·πŒ°π†π„πŒΉπŒ³πŒ° π‚πŒ΄πŒΉπŒΊπŒΎπŒ°πŒΉ. ...

Vocab Tokens Count
8k β–πŒΊπŒ°πŒ½πŒ°πŒ³πŒ° β–πŒΉπƒπ„ β–πŒ»πŒ°πŒ½πŒ³ β–πŒ°πŒ½πŒ° β–πŒ°πŒΉπ‚πŒΈπŒ°πŒ³πŒ°πŒΉπŒ» 𐌰𐌹 β–πŒ½πŒ°πŒΏπ‚πŒΈ πŒ°πŒΌπŒ°πŒΉπ‚πŒΉπŒΊ 𐌰 β–πŒΎπŒ°πŒ· ... (+20 more) 30
16k β–πŒΊπŒ°πŒ½πŒ°πŒ³πŒ° β–πŒΉπƒπ„ β–πŒ»πŒ°πŒ½πŒ³ β–πŒ°πŒ½πŒ° β–πŒ°πŒΉπ‚πŒΈπŒ°πŒ³πŒ°πŒΉπŒ»πŒ°πŒΉ β–πŒ½πŒ°πŒΏπ‚πŒΈ πŒ°πŒΌπŒ°πŒΉπ‚πŒΉπŒΊπŒ° β–πŒΎπŒ°πŒ· β–πŒ²πŒ°πŒΌπŒ°π‚πŒΊπ‰πŒΈ β–πŒ²πŒ°πŒ²πŒ°πŒ·πŒ°π†π„πŒΉπŒ³πŒ° ... (+16 more) 26
32k β–πŒΊπŒ°πŒ½πŒ°πŒ³πŒ° β–πŒΉπƒπ„ β–πŒ»πŒ°πŒ½πŒ³ β–πŒ°πŒ½πŒ° β–πŒ°πŒΉπ‚πŒΈπŒ°πŒ³πŒ°πŒΉπŒ»πŒ°πŒΉ β–πŒ½πŒ°πŒΏπ‚πŒΈπŒ°πŒΌπŒ°πŒΉπ‚πŒΉπŒΊπŒ° β–πŒΎπŒ°πŒ· β–πŒ²πŒ°πŒΌπŒ°π‚πŒΊπ‰πŒΈ β–πŒ²πŒ°πŒ²πŒ°πŒ·πŒ°π†π„πŒΉπŒ³πŒ° β–π‚πŒ΄πŒΉπŒΊπŒΎπŒ°πŒΉ ... (+12 more) 22

Sample 2: πŒ°π€πŒ»πƒ β€” πŒ°πŒΊπ‚πŒ°πŒ½ πŒ°π€πŒ»πŒ°πŒ±πŒ°πŒ²πŒΌπŒ΄ 𐌾𐌰𐌷 π…πŒ°πŒΉπŒ»πŒ°πŒΊπŒΏπŒ½πŒΈπŒ° π†π‰πŒ³πŒ΄πŒΉπŒ½πƒ πŒΉπƒπ„Β·

Vocab Tokens Count
8k β–πŒ°π€πŒ»πƒ ▁— β–πŒ°πŒΊπ‚πŒ°πŒ½ β–πŒ°π€ 𐌻 𐌰𐌱𐌰𐌲𐌼𐌴 β–πŒΎπŒ°πŒ· β–π…πŒ°πŒΉπŒ» 𐌰𐌺𐌿𐌽𐌸𐌰 β–π†π‰πŒ³πŒ΄πŒΉπŒ½πƒ ... (+2 more) 12
16k β–πŒ°π€πŒ»πƒ ▁— β–πŒ°πŒΊπ‚πŒ°πŒ½ β–πŒ°π€ 𐌻 𐌰𐌱𐌰𐌲𐌼𐌴 β–πŒΎπŒ°πŒ· β–π…πŒ°πŒΉπŒ» 𐌰𐌺𐌿𐌽𐌸𐌰 β–π†π‰πŒ³πŒ΄πŒΉπŒ½πƒ ... (+2 more) 12
32k β–πŒ°π€πŒ»πƒ ▁— β–πŒ°πŒΊπ‚πŒ°πŒ½ β–πŒ°π€πŒ»πŒ°πŒ±πŒ°πŒ²πŒΌπŒ΄ β–πŒΎπŒ°πŒ· β–π…πŒ°πŒΉπŒ»πŒ°πŒΊπŒΏπŒ½πŒΈπŒ° β–π†π‰πŒ³πŒ΄πŒΉπŒ½πƒ β–πŒΉπƒπ„ Β· 9

Sample 3: 𐌺𐌰𐌿𐌻𐌿𐌼𐌱𐌾𐌰 (Colombia) πŒΉπƒπ„ 𐌻𐌰𐌽𐌳 𐌹𐌽 πƒπŒΏπŒ½πŒΈπ‚πŒ°πŒ°πŒΌπŒ°πŒΉπ‚πŒΉπŒΊπŒ°πŒΉ. πŒ°πŒΌπŒ΄π‚πŒΉπŒΊπŒ° This page is brought t...

Vocab Tokens Count
8k β–πŒΊπŒ°πŒΏπŒ»πŒΏπŒΌπŒ± 𐌾𐌰 ▁( col om b ia ) β–πŒΉπƒπ„ β–πŒ»πŒ°πŒ½πŒ³ ... (+19 more) 29
16k β–πŒΊπŒ°πŒΏπŒ»πŒΏπŒΌπŒ±πŒΎπŒ° ▁( colombia ) β–πŒΉπƒπ„ β–πŒ»πŒ°πŒ½πŒ³ β–πŒΉπŒ½ β–πƒπŒΏπŒ½πŒΈπ‚πŒ°πŒ°πŒΌπŒ°πŒΉπ‚πŒΉπŒΊπŒ°πŒΉ . β–πŒ°πŒΌπŒ΄π‚πŒΉπŒΊπŒ° ... (+12 more) 22
32k β–πŒΊπŒ°πŒΏπŒ»πŒΏπŒΌπŒ±πŒΎπŒ° ▁( colombia ) β–πŒΉπƒπ„ β–πŒ»πŒ°πŒ½πŒ³ β–πŒΉπŒ½ β–πƒπŒΏπŒ½πŒΈπ‚πŒ°πŒ°πŒΌπŒ°πŒΉπ‚πŒΉπŒΊπŒ°πŒΉ . β–πŒ°πŒΌπŒ΄π‚πŒΉπŒΊπŒ° ... (+10 more) 20

Key Findings

  • Best Compression: 32k achieves 2.884x compression
  • Lowest UNK Rate: 8k with 0.0669% unknown tokens
  • Trade-off: Larger vocabularies improve compression but increase model size
  • Recommendation: 32k vocabulary provides optimal balance for production use

2. N-gram Model Evaluation

N-gram Perplexity

N-gram Unique

N-gram Coverage

Results

N-gram Variant Perplexity Entropy Unique N-grams Top-100 Coverage Top-1000 Coverage
2-gram Word 773 9.60 1,213 36.4% 92.9%
2-gram Subword 546 πŸ† 9.09 2,316 47.1% 96.7%
3-gram Word 630 9.30 1,041 40.1% 98.0%
3-gram Subword 4,140 12.02 14,315 17.0% 56.1%
4-gram Word 3,152 11.62 3,669 12.9% 38.4%
4-gram Subword 17,609 14.10 51,785 8.9% 30.1%
5-gram Word 2,230 11.12 2,508 13.1% 46.3%
5-gram Subword 36,495 15.16 84,401 6.7% 21.6%

Top 5 N-grams by Size

2-grams (Word):

Rank N-gram Count
1 i to 325
2 wv i 315
3 akin to 129
4 iii to 106
5 𐌹𐌽 πŒ°πŒΌπŒ°πŒΉπ‚πŒΉπŒΊπŒ°πŒΉ 102

3-grams (Word):

Rank N-gram Count
1 wv i to 276
2 akin to eng 78
3 sv vii to 64
4 sv iii to 61
5 πŒΉπƒπ„ 𐌻𐌰𐌽𐌳 𐌹𐌽 54

4-grams (Word):

Rank N-gram Count
1 πŒΈπ‰πŒΆπŒ΄πŒΉ πŒ°πŒ»πŒ»π‰πƒ π…πŒΉπŒΊπŒΉπ€πŒ°πŒΉπŒ³πŒΎπ‰πƒ πƒπŒΊπŒΏπŒ»πŒΏπŒ½ 48
2 πŒ°πŒ»πŒ»π‰πƒ π…πŒΉπŒΊπŒΉπ€πŒ°πŒΉπŒ³πŒΎπ‰πƒ πƒπŒΊπŒΏπŒ»πŒΏπŒ½ 𐌷𐌰𐌱𐌰𐌽 48
3 πƒπŒ΄πŒΉπŒ³π‰ πŒΈπ‰πŒΆπŒ΄πŒΉ πŒ°πŒ»πŒ»π‰πƒ π…πŒΉπŒΊπŒΉπ€πŒ°πŒΉπŒ³πŒΎπ‰πƒ 48
4 𐌹𐌽 πŒ°πŒΌπŒ°πŒΉπ‚πŒΉπŒΊπŒ°πŒΉ πŒ²πŒ°π…πŒΉπƒπƒπŒ΄πŒΉπƒ www 48
5 𐌹𐌽 πŒ°πŒΌπŒ°πŒΉπ‚πŒΉπŒΊπŒ°πŒΉ πŒ·πŒ°πŒΏπŒ±πŒΉπŒ³πŒ°πŒ±πŒ°πŒΏπ‚πŒ²πƒ πŒΉπƒπ„ 40

5-grams (Word):

Rank N-gram Count
1 πƒπŒ΄πŒΉπŒ³π‰ πŒΈπ‰πŒΆπŒ΄πŒΉ πŒ°πŒ»πŒ»π‰πƒ π…πŒΉπŒΊπŒΉπ€πŒ°πŒΉπŒ³πŒΎπ‰πƒ πƒπŒΊπŒΏπŒ»πŒΏπŒ½ 48
2 πŒΈπ‰πŒΆπŒ΄πŒΉ πŒ°πŒ»πŒ»π‰πƒ π…πŒΉπŒΊπŒΉπ€πŒ°πŒΉπŒ³πŒΎπ‰πƒ πƒπŒΊπŒΏπŒ»πŒΏπŒ½ 𐌷𐌰𐌱𐌰𐌽 48
3 πŒΉπƒπ„ πŒ²πŒ°π…πŒΉ 𐌹𐌽 πŒ°πŒΌπŒ°πŒΉπ‚πŒΉπŒΊπŒ°πŒΉ πŒ·πŒ°πŒΏπŒ±πŒΉπŒ³πŒ°πŒ±πŒ°πŒΏπ‚πŒ²πƒ 36
4 πŒ²πŒ°π…πŒΉ 𐌹𐌽 πŒ°πŒΌπŒ°πŒΉπ‚πŒΉπŒΊπŒ°πŒΉ πŒ·πŒ°πŒΏπŒ±πŒΉπŒ³πŒ°πŒ±πŒ°πŒΏπ‚πŒ²πƒ πŒΉπƒπ„ 36
5 πŒ·πŒ°πŒΏπŒ±πŒΉπŒ³πŒ°πŒ±πŒ°πŒΏπ‚πŒ²πƒ 𐌾𐌰𐌷 𐍃𐍉 πŒΌπŒ°πŒΉπƒπ„π‰ πŒ±πŒ°πŒΏπ‚πŒ²πƒ 21

2-grams (Subword):

Rank N-gram Count
1 , _ 17,634
2 . _ 14,540
3 𐌰 𐌹 7,870
4 𐍃 _ 7,637
5 𐌹 𐍃 6,470

3-grams (Subword):

Rank N-gram Count
1 _ - _ 2,452
2 n , _ 2,251
3 s , _ 2,187
4 𐌹 𐌽 _ 2,125
5 , _ s 2,064

4-grams (Subword):

Rank N-gram Count
1 _ 𐌹 𐌽 _ 1,670
2 _ t o _ 1,483
3 _ 𐌾 𐌰 𐌷 1,475
4 𐌾 𐌰 𐌷 _ 1,472
5 a n , _ 1,390

5-grams (Subword):

Rank N-gram Count
1 _ 𐌾 𐌰 𐌷 _ 1,469
2 _ 𐌹 𐍃 𐍄 _ 1,060
3 _ t h e _ 885
4 , _ t o _ 881
5 _ o e . _ 839

Key Findings

  • Best Perplexity: 2-gram (subword) with 546
  • Entropy Trend: Decreases with larger n-grams (more predictable)
  • Coverage: Top-1000 patterns cover ~22% of corpus
  • Recommendation: 4-gram or 5-gram for best predictive performance

3. Markov Chain Evaluation

Markov Entropy

Markov Contexts

Markov Branching

Results

Context Variant Avg Entropy Perplexity Branching Factor Unique Contexts Predictability
1 Word 0.5463 1.460 2.78 26,779 45.4%
1 Subword 1.3185 2.494 9.24 600 0.0%
2 Word 0.1349 1.098 1.22 73,655 86.5%
2 Subword 0.9989 1.999 5.20 5,543 0.1%
3 Word 0.0401 1.028 1.06 89,056 96.0%
3 Subword 0.7885 1.727 3.23 28,771 21.2%
4 Word 0.0157 πŸ† 1.011 1.02 93,235 98.4%
4 Subword 0.5184 1.432 2.05 92,872 48.2%

Generated Text Samples (Word-based)

Below are text samples generated from each word-based Markov chain model:

Context Size 1:

  1. 𐌹𐌽 π…πŒΉπƒπ„π‚πŒ°πŒΉ πŒ°πƒπŒΉπŒ°πŒΉ πŒ½πŒ΄πŒ·π…πŒΏπŒ½πŒ³π‰πƒ πŒΏπ†πŒ°π‚ 500 π†πŒ°πŒΏπ‚πŒ° π‡π‚πŒΉπƒπ„πŒ°πŒΏ πƒπŒ° πŒΌπŒ°πŒΉπƒπ„πŒ° 𐌰𐌻𐌻𐌰𐌹𐌢𐌴 πŒ°πŒΉπ…πŒ΄ πƒπŒ΄πŒΉπŒ³π‰ πŒΈπ‰πŒΆπŒ΄πŒΉ 𐌡𐌹𐌼𐌰𐌽𐌳 π†π‚πŒ°πŒΌ
  2. to tame 170 182 354 fulla ga nΓ‘itjan wv i am trying to call cry aloud
  3. 𐌾𐌰𐌷 πŒ°πŒ½πŒΈπŒ°π‚πŒ°πŒΉπŒΌ πŒ±πŒ°π‚πŒ±πŒ°π‚πŒΉπ…πŒ΄ 𐌸𐌰𐌹𐌴𐌹 𐌺𐌿𐌽𐌽𐌰𐌽 𐍈𐌰 𐌹𐌽 πŒΎπŒ΄π‚πŒ° πŒΏπƒπ…πŒ°πŒΉπ‚π€πŒ°πŒ½ πŒΌπŒ°πŒ·π„πŒ΄πŒΉπŒ² π…πŒ°πƒ πŒΈπŒ°π„πŒ΄πŒΉ πŒ°π‚πŒ°πŒ±πŒΉπƒπŒΊπŒ° π‚πŒ°πŒΆπŒ³πŒ° π‚πŒ°πŒΆπŒ³πŒ° πŒΏπŒΊπ‚πŒ°...

Context Size 2:

  1. i to lighten 424 ohg lohazzen lΓ‘un sn pay reward 22 141 175 211 oe ht a
  2. wv i see ga eitjan eits aj white 140 165 oe hwt ohg hw 329a an av
  3. akin to eng ask treat shamefully oe ntan ohg neien ga nasjan wv i to permit allow

Context Size 3:

  1. wv i to give light 63 85 105 320 oe lehtan liuhten liusan sv ii see af skiuban
  2. akin to eng arrow arrow arjan distantly akin to lat anima spirit pant comp uzanan exhale and anda
  3. sv vii to call to one profess confess acknowledge give thanks to and hΓ‘usjan wv i to sin

Context Size 4:

  1. πƒπŒ΄πŒΉπŒ³π‰ πŒΈπ‰πŒΆπŒ΄πŒΉ πŒ°πŒ»πŒ»π‰πƒ π…πŒΉπŒΊπŒΉπ€πŒ°πŒΉπŒ³πŒΎπ‰πƒ πƒπŒΊπŒΏπŒ»πŒΏπŒ½ 𐌷𐌰𐌱𐌰𐌽 πƒπŒ΄πŒΉπŒ³π‰ πŒΈπ‰πŒΆπŒ΄πŒΉ πŒ°πŒ»πŒ»π‰πƒ π…πŒΉπŒΊπŒΉπ€πŒ°πŒΉπŒ³πŒΎπ‰πƒ πƒπŒΊπŒΏπŒ»πŒΏπŒ½ 𐌷𐌰𐌱𐌰𐌽 πŒ±πŒ°πŒ½πŒ³πŒ°π‚πŒ΄πŒΉπŒΊπŒΎπŒΉπƒ
  2. 𐌹𐌽 πŒ°πŒΌπŒ°πŒΉπ‚πŒΉπŒΊπŒ°πŒΉ πŒ²πŒ°π…πŒΉπƒπƒπŒ΄πŒΉπƒ www stpaul gov
  3. πŒΈπ‰πŒΆπŒ΄πŒΉ πŒ°πŒ»πŒ»π‰πƒ π…πŒΉπŒΊπŒΉπ€πŒ°πŒΉπŒ³πŒΎπ‰πƒ πƒπŒΊπŒΏπŒ»πŒΏπŒ½ 𐌷𐌰𐌱𐌰𐌽 πƒπŒ΄πŒΉπŒ³π‰ πŒΈπ‰πŒΆπŒ΄πŒΉ πŒ°πŒ»πŒ»π‰πƒ π…πŒΉπŒΊπŒΉπ€πŒ°πŒΉπŒ³πŒΎπ‰πƒ πƒπŒΊπŒΏπŒ»πŒΏπŒ½ 𐌷𐌰𐌱𐌰𐌽 πŒ±πŒ°πŒ½πŒ³πŒ°π‚πŒ΄πŒΉπŒΊπŒΎπŒΉπƒ

Generated Text Samples (Subword-based)

Below are text samples generated from each subword-based Markov chain model:

Context Size 1:

  1. _sl_1_scoperutce
  2. 𐌰𐌹𐌺𐌿𐌸_mago_𐌸𐌰_k,
  3. 𐌹𐍈𐌰𐌷𐌹_(*wve._bal

Context Size 2:

  1. ,_πƒπŒ΄πŒΉπŒ½πƒ_𐌾𐌰𐌳𐌰,_ble
  2. ._oe._arkjan_ram,
  3. 𐌰𐌹._infornarusess

Context Size 3:

  1. _-_chimess,_munia)
  2. n,_with_kaΓΊlustriv
  3. s,_mallmers_but_at

Context Size 4:

  1. _𐌹𐌽_πŒ°πŒΌπŒ°πŒΉπ‚πŒΉπŒΊπŒΉπƒ_𐌿𐌽𐌳_𐌳
  2. _to_restone_...hadu
  3. _𐌾𐌰𐌷_πŒ»πŒΉπŒΏπŒ²π‰πƒπŒ»πŒ°πŒ±πŒΉπƒπŒΊπŒΉπƒ

Key Findings

  • Best Predictability: Context-4 (word) with 98.4% predictability
  • Branching Factor: Decreases with context size (more deterministic)
  • Memory Trade-off: Larger contexts require more storage (92,872 contexts)
  • Recommendation: Context-3 or Context-4 for text generation

4. Vocabulary Analysis

Zipf's Law

Top Words

Coverage Curve

Statistics

Metric Value
Vocabulary Size 10,445
Total Tokens 85,682
Mean Frequency 8.20
Median Frequency 3
Frequency Std Dev 41.75

Most Common Words

Rank Word Frequency
1 𐌹𐌽 1,691
2 to 1,570
3 𐌾𐌰𐌷 1,478
4 πŒΉπƒπ„ 1,269
5 the 906
6 i 903
7 oe 851
8 ohg 841
9 a 719
10 π…πŒ°πƒ 616

Least Common Words (from vocabulary)

Rank Word Frequency
1 πŒ³πŒΏπ„π„πŒ΄ 2
2 π†πŒΉπŒ²πŒ²π‚πŒ°πŒ½πƒ 2
3 πƒπŒΉπŒΏπŒΊπŒ°πŒΉπŒΆπŒ΄ 2
4 𐌺𐌿𐌺𐌾𐌰𐌽𐌳 2
5 πŒ·πŒ°πŒΉπ„πŒΉπƒ 2
6 πƒπŒΏπŒ½πŒΈπ‚πŒΉπƒ 2
7 πŒ·πŒΉπŒ±πŒ°πŒΉπ‚πŒΎπ‰πƒ 2
8 citerior 2
9 ulterior 2
10 πŒΈπŒΏπ‚πŒΊπŒ΄πŒΉπƒ 2

Zipf's Law Analysis

Metric Value
Zipf Coefficient 0.8663
RΒ² (Goodness of Fit) 0.982156
Adherence Quality excellent

Coverage Analysis

Top N Words Coverage
Top 100 33.8%
Top 1,000 63.2%
Top 5,000 86.7%
Top 10,000 99.0%

Key Findings

  • Zipf Compliance: RΒ²=0.9822 indicates excellent adherence to Zipf's law
  • High Frequency Dominance: Top 100 words cover 33.8% of corpus
  • Long Tail: 445 words needed for remaining 1.0% coverage

5. Word Embeddings Evaluation

Embedding Isotropy

Similarity Matrix

t-SNE Words

t-SNE Sentences

5.1 Cross-Lingual Alignment

Alignment Quality

Multilingual t-SNE

5.2 Model Comparison

Model Dimension Isotropy Semantic Density Alignment R@1 Alignment R@10
mono_32d 32 0.1831 πŸ† 0.4505 N/A N/A
mono_64d 64 0.0766 0.4301 N/A N/A
mono_128d 128 0.0136 0.4355 N/A N/A
aligned_32d 32 0.1831 0.4429 0.0080 0.0680
aligned_64d 64 0.0766 0.4301 0.0080 0.0740
aligned_128d 128 0.0136 0.4348 0.0160 0.0900

Key Findings

  • Best Isotropy: mono_32d with 0.1831 (more uniform distribution)
  • Semantic Density: Average pairwise similarity of 0.4373. Lower values indicate better semantic separation.
  • Alignment Quality: Aligned models achieve up to 1.6% R@1 in cross-lingual retrieval.
  • Recommendation: 128d aligned for best cross-lingual performance

6. Morphological Analysis (Experimental)

This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.

6.1 Productivity & Complexity

Metric Value Interpretation Recommendation
Productivity Index 5.000 High morphological productivity Reliable analysis
Idiomaticity Gap 1.146 High formulaic/idiomatic content -

6.2 Affix Inventory (Productive Units)

These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.

Productive Prefixes

Prefix Examples

Productive Suffixes

Suffix Examples
-an ocean, wan, hauhjan
-πŒ½πƒ πŒ΅πŒ΄πŒ½πƒ, πŒΊπŒ°πŒ·π…πŒ΄πŒΉπŒ½πƒ, πŒ±π‚πŒΏπŒΊπŒ΄πŒΉπŒ½πƒ

6.3 Bound Stems (Lexical Roots)

Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.

Stem Cohesion Substitutability Examples
ther 2.06x 24 contexts there, other, others
πŒ°πŒΏπ‚πŒ³ 1.98x 18 contexts π…πŒ°πŒΏπ‚πŒ³, π…πŒ°πŒΏπ‚πŒ³πŒ΄, π…πŒ°πŒΏπ‚πŒ³πŒ°
tion 2.11x 14 contexts option, motion, nation
𐌴𐌹𐌽𐌰 1.83x 16 contexts 𐌺𐌴𐌹𐌽𐌰, 𐌼𐌴𐌹𐌽𐌰, π…πŒ΄πŒΉπŒ½πŒ°
π…πŒ°πŒΏπ‚ 1.80x 14 contexts π…πŒ°πŒΏπ‚πŒ³, π…πŒ°πŒΏπ‚πŒ³πŒ΄, π…πŒ°πŒΏπ‚πŒ³πŒ°
𐌿𐌳𐌰𐌽 2.08x 9 contexts πŒ²πŒΏπŒ³πŒ°πŒ½πƒ, 𐌸𐌹𐌿𐌳𐌰𐌽, πŒΈπŒΉπŒΏπŒ³πŒ°πŒ½πƒ
𐌹𐌿𐌳𐌰 1.71x 14 contexts 𐌻𐌹𐌿𐌳𐌰, 𐌸𐌹𐌿𐌳𐌰, 𐌸𐌹𐌿𐌳𐌰𐌹
𐌾𐌰𐌽𐌳 1.62x 16 contexts πƒπ‰πŒΊπŒΎπŒ°πŒ½πŒ³, π…πŒ°πŒ²πŒΎπŒ°πŒ½πŒ³, πŒΌπŒ°π„πŒΎπŒ°πŒ½πŒ³
π‚πŒ°πŒΆπŒ³ 1.98x 9 contexts π‚πŒ°πŒΆπŒ³π‰, π‚πŒ°πŒΆπŒ³πŒ°, π‚πŒ°πŒΆπŒ³π‰πŒΌ
𐌹𐌽𐌰𐌹 1.88x 10 contexts 𐌰𐌹𐌽𐌰𐌹, πƒπŒΉπŒ½πŒ°πŒΉ, πƒπŒ΄πŒΉπŒ½πŒ°πŒΉ
𐌷𐌰𐌱𐌰 1.91x 9 contexts 𐌷𐌰𐌱𐌰𐌽, 𐌷𐌰𐌱𐌰𐌼, 𐌷𐌰𐌱𐌰𐌹𐌸
π‚πŒ΄πŒΉπŒΊ 1.82x 10 contexts π‚πŒ΄πŒΉπŒΊπƒ, π‚πŒ΄πŒΉπŒΊπŒΉ, π‚πŒ΄πŒΉπŒΊπŒΉπƒ

6.4 Affix Compatibility (Co-occurrence)

This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.

No significant affix co-occurrences detected.

6.5 Recursive Morpheme Segmentation

Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).

Word Suggested Split Confidence Stem
πƒπŒΊπŒ°πŒΏπŒ½πŒ΄πŒΉπŒ½πƒ πƒπŒΊπŒ°πŒΏπŒ½πŒ΄πŒΉ-πŒ½πƒ 4.5 πƒπŒΊπŒ°πŒΏπŒ½πŒ΄πŒΉ
π†π‚πŒΏπŒΌπŒΉπƒπ„π‰πŒ½πƒ π†π‚πŒΏπŒΌπŒΉπƒπ„π‰-πŒ½πƒ 4.5 π†π‚πŒΏπŒΌπŒΉπƒπ„π‰
πŒΌπŒΏπŒ½πŒ³π‚πŒ΄πŒΉπŒ½πƒ πŒΌπŒΏπŒ½πŒ³π‚πŒ΄πŒΉ-πŒ½πƒ 4.5 πŒΌπŒΏπŒ½πŒ³π‚πŒ΄πŒΉ
πŒ°πŒΏπƒπ„π‚πŒ°πŒ²πŒΏπ„πŒ°πŒ½πƒ πŒ°πŒΏπƒπ„π‚πŒ°πŒ²πŒΏπ„πŒ°-πŒ½πƒ 4.5 πŒ°πŒΏπƒπ„π‚πŒ°πŒ²πŒΏπ„πŒ°
πŒ°πŒ½πŒ³πŒ½πŒΏπŒΌπŒ°πŒ½πƒ 𐌰𐌽𐌳𐌽𐌿𐌼𐌰-πŒ½πƒ 1.5 𐌰𐌽𐌳𐌽𐌿𐌼𐌰
πŒ²πŒ°πŒ²πŒ°πŒ·πŒ°π†π„πŒΎπŒ°πŒ½πŒ³πŒ°πŒ½πƒ πŒ²πŒ°πŒ²πŒ°πŒ·πŒ°π†π„πŒΎπŒ°πŒ½πŒ³πŒ°-πŒ½πƒ 1.5 πŒ²πŒ°πŒ²πŒ°πŒ·πŒ°π†π„πŒΎπŒ°πŒ½πŒ³πŒ°
porthpean porthpe-an 1.5 porthpe
barbarian barbari-an 1.5 barbari
scandinavian scandinavi-an 1.5 scandinavi
π†π‚πŒΉπŒΎπŒ°π„πŒΉπŒΌπ‚πŒ΄πŒΉπŒ½πƒ π†π‚πŒΉπŒΎπŒ°π„πŒΉπŒΌπ‚πŒ΄πŒΉ-πŒ½πƒ 1.5 π†π‚πŒΉπŒΎπŒ°π„πŒΉπŒΌπ‚πŒ΄πŒΉ
πŒ·π‚πŒΏπŒ²πŒΎπŒ°πŒ±πŒ°πŒΉπŒ½πŒ°πŒ½πƒ πŒ·π‚πŒΏπŒ²πŒΎπŒ°πŒ±πŒ°πŒΉπŒ½πŒ°-πŒ½πƒ 1.5 πŒ·π‚πŒΏπŒ²πŒΎπŒ°πŒ±πŒ°πŒΉπŒ½πŒ°
πŒΌπŒ°πŒΎπŒ°πŒΉπŒ½πŒΎπ‰πŒ½πƒ πŒΌπŒ°πŒΎπŒ°πŒΉπŒ½πŒΎπ‰-πŒ½πƒ 1.5 πŒΌπŒ°πŒΎπŒ°πŒΉπŒ½πŒΎπ‰
macmillan macmill-an 1.5 macmill
πŒΌπŒΉπŒ»πŒΏπŒΊπƒπ†π‰πŒ³πŒΎπŒ°πŒ½πƒ πŒΌπŒΉπŒ»πŒΏπŒΊπƒπ†π‰πŒ³πŒΎπŒ°-πŒ½πƒ 1.5 πŒΌπŒΉπŒ»πŒΏπŒΊπƒπ†π‰πŒ³πŒΎπŒ°
πŒ½πŒΉπ‚πŒ±πŒ°πŒ½πŒΉπŒ½πƒ πŒ½πŒΉπ‚πŒ±πŒ°πŒ½πŒΉ-πŒ½πƒ 1.5 πŒ½πŒΉπ‚πŒ±πŒ°πŒ½πŒΉ

6.6 Linguistic Interpretation

Automated Insight: The language Gothic shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.

Note on Idiomaticity: The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts.


7. Summary & Recommendations

Performance Dashboard

Production Recommendations

Component Recommended Rationale
Tokenizer 32k BPE Best compression (2.88x)
N-gram 2-gram Lowest perplexity (546)
Markov Context-4 Highest predictability (98.4%)
Embeddings 100d Balanced semantic capture and isotropy

Appendix: Metrics Glossary & Interpretation Guide

This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.

Tokenizer Metrics

Compression Ratio

Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.

Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.

What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.

Average Token Length (Fertility)

Definition: Mean number of characters per token produced by the tokenizer.

Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.

What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.

Unknown Token Rate (OOV Rate)

Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.

Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.

What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.

N-gram Model Metrics

Perplexity

Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.

Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.

What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.

Entropy

Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.

Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.

What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.

Coverage (Top-K)

Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.

Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.

What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.

Markov Chain Metrics

Average Entropy

Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.

Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).

What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.

Branching Factor

Definition: Average number of unique next tokens observed for each context.

Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).

What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.

Predictability

Definition: Derived metric: (1 - normalized_entropy) Γ— 100%. Indicates how deterministic the model's predictions are.

Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.

What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.

Vocabulary & Zipf's Law Metrics

Zipf's Coefficient

Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.

Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.

What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.

RΒ² (Coefficient of Determination)

Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.

Intuition: RΒ² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.

What to seek: RΒ² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.

Vocabulary Coverage

Definition: Cumulative percentage of corpus tokens accounted for by the top N words.

Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.

What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.

Word Embedding Metrics

Isotropy

Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.

Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.

What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.

Average Norm

Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.

Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.

What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).

Cosine Similarity

Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).

Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.

What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.

t-SNE Visualization

Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.

Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.

What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.

General Interpretation Guidelines

  1. Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
  2. Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
  3. Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
  4. Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
  5. Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.

Visualizations Index

Visualization Description
Tokenizer Compression Compression ratios by vocabulary size
Tokenizer Fertility Average token length by vocabulary
Tokenizer OOV Unknown token rates
Tokenizer Total Tokens Total tokens by vocabulary
N-gram Perplexity Perplexity by n-gram size
N-gram Entropy Entropy by n-gram size
N-gram Coverage Top pattern coverage
N-gram Unique Unique n-gram counts
Markov Entropy Entropy by context size
Markov Branching Branching factor by context
Markov Contexts Unique context counts
Zipf's Law Frequency-rank distribution with fit
Vocab Frequency Word frequency distribution
Top 20 Words Most frequent words
Vocab Coverage Cumulative coverage curve
Embedding Isotropy Vector space uniformity
Embedding Norms Vector magnitude distribution
Embedding Similarity Word similarity heatmap
Nearest Neighbors Similar words for key terms
t-SNE Words 2D word embedding visualization
t-SNE Sentences 2D sentence embedding visualization
Position Encoding Encoding method comparison
Model Sizes Storage requirements
Performance Dashboard Comprehensive performance overview

About This Project

Data Source

Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.

Project

A project by Wikilangs - Open-source NLP models for every Wikipedia language.

Maintainer

Omar Kamali - Omneity Labs

Citation

If you use these models in your research, please cite:

@misc{wikilangs2025,
  author = {Kamali, Omar},
  title = {Wikilangs: Open NLP Models for Wikipedia Languages},
  year = {2025},
  doi = {10.5281/zenodo.18073153},
  publisher = {Zenodo},
  url = {https://huggingface.co/wikilangs}
  institution = {Omneity Labs}
}

License

MIT License - Free for academic and commercial use.

Links


Generated by Wikilangs Models Pipeline

Report Date: 2026-01-04 15:24:37

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Dataset used to train wikilangs/got